CSE 291: Operating Systems in Datacenters

Amy Ousterhout

Nov. 17, 2022

Agenda for Today

- Project presentations
- Memory
- · Llama discussion

Project Presentations

Project Presentations: Logistics

- During class on 11/29 and 12/1
- Talk duration depends on group size
 - For 1/2/3 students you will have 12/15/17 minutes
- · 3 minutes of questions after your presentation
 - Ask questions of your peers!
- Use slides
- Will post on Canvas:
 - Details about project presentations
 - Sign up slots

Project Presentations: Content

- The problem and motivation
 - · Your research problem or question and why it's important

- Background
 - Information needed to understand the rest of your presentation

- Solution
 - How did you solve your problem or try to?
 - · What worked well and what didn't?

- Experimental setup
- Results and implications

- Future work
 - What steps would you take next to continue this work?

Tips for Giving a Good Talk

- Consider your audience. What do they know or not know?
 - In this case audience == your peers
- Motivate the problem. Why should your audience care?
- Explain why, not just what
 - What: LegoOS has an ExCache on each pComponent and the rest of the memory is on the remote mComponent
 - Why: Because of the high latency to access remote memory in the mComponent, LegoOS adds an extra cache, the ExCache, to pComponents
- For experiments, tell us what question you're trying to answer
 - For example: how does disaggregation impact the performance of applications?
- Practice!

Tips for Designing Good Slides

- Give your slides meaningful titles
 - "Background" vs. "Hardware Support for Disaggregation"
- Use diagrams and graphs to illustrate your ideas
 - Hint: you can re-use these for your write-up
- Use text sparingly

Memory

Memory in Datacenters

- Storage technology is not improving significantly
 - Capacity has increased (16667x from 1980s -> 2009)
 - Transfer rate has increased less (50x from 1980s -> 2009)
 - Latency has improved even less (2x from 1980s -> 2009)
- Rise of data-intensive applications
 - Machine learning
 - Analytics
 - Complex web applications
- Motivates storing more data in memory
 - Low latency, high-bandwidth access

Research Challenges

- How to avoid overloading the TLB?
 - Huge pages!
- But huge pages raise other challenges
 - Fragmentation
 - Learning-based Memory Allocation for C++ Server Workloads [ASPLOS '20]
- How to reduce TLB overheads?
 - Don't shoot down TLB shootdowns! [EuroSys '20]

Llama Discussion