CSE 291: Operating Systems in Datacenters

Amy Ousterhout

Nov. 17, 2022
Agenda for Today

• Project presentations
• Memory
• Llama discussion
Project Presentations
Project Presentations: Logistics

- During class on 11/29 and 12/1
- Talk duration depends on group size
 - For 1/2/3 students you will have 12/15/17 minutes
- 3 minutes of questions after your presentation
 - Ask questions of your peers!
- Use slides
- Will post on Canvas:
 - Details about project presentations
 - Sign up slots
Project Presentations: Content

• The problem and motivation
 • Your research problem or question and why it’s important

• Background
 • Information needed to understand the rest of your presentation

• Solution
 • How did you solve your problem or try to?
 • What worked well and what didn’t?

• Evaluation
 • Experimental setup
 • Results and implications

• Future work
 • What steps would you take next to continue this work?
Tips for Giving a Good Talk

• Consider your audience. What do they know or not know?
 • In this case audience == your peers
• Motivate the problem. Why should your audience care?
• Explain **why**, not just **what**
 • What: LegoOS has an ExCache on each pComponent and the rest of the memory is on the remote mComponent
 • Why: Because of the high latency to access remote memory in the mComponent, LegoOS adds an extra cache, the ExCache, to pComponents
• For experiments, tell us what question you’re trying to answer
 • For example: how does disaggregation impact the performance of applications?
• Practice!
Tips for Designing Good Slides

• Give your slides meaningful titles
 • “Background” vs. “Hardware Support for Disaggregation”
• Use diagrams and graphs to illustrate your ideas
 • Hint: you can re-use these for your write-up
• Use text sparingly
Memory
Memory in Datacenters

- Storage technology is not improving significantly
 - Capacity has increased (16667x from 1980s -> 2009)
 - Transfer rate has increased less (50x from 1980s -> 2009)
 - Latency has improved even less (2x from 1980s -> 2009)
- Rise of data-intensive applications
 - Machine learning
 - Analytics
 - Complex web applications
- Motivates storing more data in memory
 - Low latency, high-bandwidth access
Research Challenges

- How to avoid overloading the TLB?
 - Huge pages!
- But huge pages raise other challenges
 - Fragmentation
 - Learning-based Memory Allocation for C++ Server Workloads [ASPLOS ‘20]
- How to reduce TLB overheads?
 - Don't shoot down TLB shootdowns! [EuroSys ‘20]
Llama Discussion