

CSE 291: Operating Systems in Datacenters

Amy Ousterhout

Sept. 27, 2022

UC San Diego

Agenda for Today

- Announcements
- CloudLab Overview
- Introduction to multicore and heterogeneity
- Multikernel discussion

Announcements

- Office hours
 - Amy: Tuesday after class or by appointment in CSE 3130
 - Anil: Friday 2-3 pm in CSE 3109
- The course is up on Canvas
- Sign up to lead a discussion
 - Due Thursday 9/29 at 11:59 pm
- Warm-up assignment
 - Will be posted on the website this evening
 - Due Thursday 10/6 Tuesday 10/11 at 11:59 pm
- First Day Survey #FinAid
 - New UCSD requirement!
 - Due Friday 10/7

CloudLab Overview

Platforms for Experimentation

- Private compute resources
- Public clouds
 - Azure Google
- PlanetLab (2002-2020)
- Emulab –
- Geni
 impacted

focus on networks and distributed systems

- Mass Open Cloud (since 2013)
 - Enables experimentation with real users
- CloudLab (since 2014)

CloudLab Goals

- Customization
 - Modify storage, virtualization, networking
- Repeatable research
 - Bare metal
 - Uniform performance

What is CloudLab?

A testbed for research on cloud computing

Hardware in CloudLab

- Standard CPUs, memory, storage, NICs
- Specialized hardware: Intel Optane, GPUs, 100 Gbit/s NICs, SmartNICs
- Details at: https://docs.cloudlab.us/hardware.html

Warm-up assignment:	m510 CPU RAM Disk NIC	270 nodes (Intel Xeon-D) Eight-core Intel Xeon D-1548 at 2.0 GHz 64GB ECC Memory (4x 16 GB DDR4-2133 SO-DIMMs) 256 GB NVMe flash storage Dual-port Mellanox ConnectX-3 10 GB NIC (PCIe v3.0, 8 lanes
Other options:	r7525 CPU RAM Disk NIC NIC GPU	15 nodes (AMD EPYC Rome, 64 core, 512GB RAM, 2 x GPU) Two 32-core AMD 7542 at 2.9GHz 512GB ECC Memory (16x 32 GB 3200MHz DDR4) One 2TB 7200 RPM 6G SATA HDD Dual-port Mellanox ConnectX-5 25 Gb NIC (PCIe v4.0) Dual-port Mellanox BlueField2 100 Gb SmartNIC Two NVIDIA GV100GL (Tesla V100S PCIe 32GB)

Who pays for CloudLab?

- National Science Foundation
- Free to use for research and educational purposes

How to Use CloudLab

- Create a "Project Profile" which specifies:
 - The configuration of 1 or more servers
 - Network connectivity between them
 - Software to run on servers
- Instantiate your Project Profile to create an experiment
 - Start immediately or make a reservation
 - Stop your experiment when you're done
 - It will terminate after 16 hours

Why use CloudLab?

- Cost cheaper than buying and maintaining your own resources or using public clouds
- Flexibility can try out different computing resources for short periods of time
- Customization tune the hardware
- Reproduceable research

What kind of research is CloudLab not ideal for?

- Large scale requiring hundreds or thousands of nodes
- Locations
 - More than a few locations
 - Specific locations
- Real cloud users

Introduction to Multicore and Heterogeneity

The Rise of Multicore

- First multicore CPUs?
 - IBM's Power4 in 2001 had 2 cores
- Driven by the end of Moore's Law

Multicore Architectures

- Cores grouped into sockets
 - Also referred to as "multi-core processors" or "NUMA nodes"
 - Interconnect in between them
- Cache coherence
 - Keeping data in separate caches consistent

Challenges of multicore

- How do you design applications that scale well across many cores?
- How do you build an **OS** that scales well? today
 - How do you design the application-OS interface to enable scalability? "The Scalable Commutativity Rule" [SOSP '13]

 - How do you make CPU scheduling scalable?
 - How do you scale **memory management**?

> later this quarter

Heterogeneity

- Heterogeneous processors
 - Different power consumption
 common in mobile and tablets
 - E.g., ARM's big.LITTLE announced in 2011
 - Different ISAs
- Other types of heterogeneity:
 - GPUs
 - SmartNICs
 - FPGAs
 - Accelerators

common in datacenters

Challenges of heterogeneity

- May not be cache coherent
- Different memory layouts
- Different models of computation (e.g., GPU vs. CPU)

Multikernel Discussion