UCSan Diego

CSE 291: Operating Systems in Datacenters

Amy Ousterhout

Oct. 18, 2022

UCSan Diego

Agenda for Today

- Reminders

- Warm-Up assignment
- Snhap overview

. ghOSt discussion

Reminders

- Projects
. Proposals due on 10/20
. Talk to us if you want help brainstorming ideas
- Project check ins next week
- We will give feedback on your proposal
. Sign-ups will be posted on Thursday
. Time slots:
. Tuesday 10/25, 2-3 pm
. Wednesday 10/26, 11-12 pm
. Friday 10/28, 2-3 pm

UCSan Diego

Snhap

Research on CPU Scheduling

theoretical practical
< >
Theory Kernel Bypass Scheduling Improve Linux’s Scheduling Linux’s Scheduler
Prioritization . ZygOS (SOSP ‘17) - Snap (SOSP ‘19) (CFS)
First come first served (FCFS) + Arachne (OSDI ‘18) + ghOSt (SOSP ‘21)
Shortest remaining processing ¢ Shenango (NSDI ‘19) * Syrup (SOSP ‘21)

time (SRPT)
Process sharing (PS)
Etc.

Assumes known task
service times, no
overheads, centralized
queues

Shinjuku (NSDI ‘19)
Caladan (OSDI ‘20)
Scheduling Policies (NSDI 22)

Limitations
Require app changes, don’t Worse performance than
support many policies or kernel-bypass approaches

support multitenancy

Lots of queueing,
slow context switches,
load imbalance,
interference

. “Snap: a Microkernel Approach to Host Networking” [SOSP “19]
. Authors from Google
. Goals:
. High-performance networking (latency and throughput)
- Ease of deployment different from existing
. Reuse Linux’s threads :|‘ kernel-bypass approaches

Snap’s Approach

.- Microkernel-like approach
. Move network stack to userspace
. Communicate with apps via shared memory

C C shared memory reads/writes
S) S SS S g innnnirgy| cC
App 1 App2 |--- App 1 App 2 App 1 Snap Process DRI
- = fn call (fn call
(system calls ((< Microkernel
AA e ~E 5 ol
Kernel Library Library App 2
N\ . T _o«
\:\\:\\ /://'Interrupts .
SsoftIRQs . _ \ 4
NIC locks NIC Linux |] NIC
Kernel
Kernel approach Library OS - Shenango, Microkernel approach -

Shinjuku, etc. Snap

https://sosp19.rcs.uwaterloo.ca/slides/marty.pdf

Scheduling the Microkernel

. Which core(s) should Snap run on?

< shared memory reads/writes

D g ininnirey)

Snap Apf Idle

/

ccC Dedicating cores: !
App 1 Snap Process))
. c0 cl cZ c3 c4 cd

<< Microkernel

it Network Module

App 2 g

TTTTTT
A A | Snap Spreads
Linux | _[Nic Spreading engines:

Microkernel approach -
Snap

Snap Compacts

Compacting engines: F

https://sosp19.rcs.uwaterloo.ca/slides/marty.pdf

MicroQuanta Kernel Scheduling Class

- How do you guarantee low-latency handling of network traffic?
- New MicroQuanta scheduling class
. Each MicroQuanta thread runs for runtime out of every period

time units
- E.g., Snap threads can run for 0.9 ms out of every 1 ms

- Demonstrates the kinds of scheduling challenges that Google faces

Snap Spreads

=

Spreading engines:

Snap Compacts

Compacting engines: H

UCSan Diego

ghOSt Discussion

