
CSE 291: Operating Systems in Datacenters

Amy Ousterhout

Oct. 18, 2022



Agenda for Today
• Reminders
• Warm-Up assignment
• Snap overview
• ghOSt discussion



Reminders
• Projects

• Proposals due on 10/20
• Talk to us if you want help brainstorming ideas

• Project check ins next week
• We will give feedback on your proposal
• Sign-ups will be posted on Thursday
• Time slots:

• Tuesday 10/25, 2-3 pm
• Wednesday 10/26, 11-12 pm
• Friday 10/28, 2-3 pm



Snap



Research on CPU Scheduling

theoretical practical

Linux’s Scheduler 
(CFS)

Theory
• Prioritization
• First come first served (FCFS)
• Shortest remaining processing 

time (SRPT)
• Process sharing (PS)
• Etc.

Lots of queueing,
slow context switches, 
load imbalance, 
interference

Assumes known task 
service times, no 
overheads, centralized 
queues

Kernel Bypass Scheduling
• ZygOS (SOSP ‘17)
• Arachne (OSDI ‘18)
• Shenango (NSDI ‘19)
• Shinjuku (NSDI ‘19)
• Caladan (OSDI ‘20)
• Scheduling Policies (NSDI ‘22)

Improve Linux’s Scheduling
• Snap (SOSP ‘19)
• ghOSt (SOSP ‘21)
• Syrup (SOSP ‘21)

Require app changes, don’t 
support many policies or 
support multitenancy

Limitations

Worse performance than 
kernel-bypass approaches



Snap
• “Snap: a Microkernel Approach to Host Networking” [SOSP ‘19]

• Authors from Google
• Goals:

• High-performance networking (latency and throughput)
• Ease of deployment
• Reuse Linux’s threads

different from existing 
kernel-bypass approaches



Snap’s Approach
• Microkernel-like approach

• Move network stack to userspace
• Communicate with apps via shared memory

Kernel approach Library OS - Shenango, 
Shinjuku, etc.

Microkernel approach -
Snap

https://sosp19.rcs.uwaterloo.ca/slides/marty.pdf



Scheduling the Microkernel
• Which core(s) should Snap run on?

Microkernel approach -
Snap

https://sosp19.rcs.uwaterloo.ca/slides/marty.pdf

Dedicating cores:

Spreading engines:

Compacting engines:



MicroQuanta Kernel Scheduling Class
• How do you guarantee low-latency handling of network traffic?
• New MicroQuanta scheduling class
• Each MicroQuanta thread runs for runtime out of every period

time units
• E.g., Snap threads can run for 0.9 ms out of every 1 ms

• Demonstrates the kinds of scheduling challenges that Google faces

https://sosp19.rcs.uwaterloo.ca/slides/marty.pdf

Spreading engines:

Compacting engines:



ghOSt Discussion


