N)
)
Check for
updates

Out of Hand for Hardware? Within Reach for Software!

Zhihong Luo Silvery Fu Emmanuel Amaro
UC Berkeley UC Berkeley VMware Research
Amy Ousterhout Sylvia Ratnasamy Scott Shenker

UC San Diego UC Berkeley UC Berkeley & ICSI
ABSTRACT ;
Events that take 10s to 100s of ns like cache misses increas- Hardware pr:::::sal Ocsoétl;i?:ﬁge
ingly cause CPU stalls. However, hiding the latency of these : Software
events is challenging: hardware mechanisms suffer from the _ ;
lack of flexibility, whereas prior software mechanisms fall L1 miss, long instructions L2 miss, memory access, Gk 10, GPU

short due to large overhead and limited event visibility. In
this paper, we argue that with a combination of two emerg-
ing techniques - light-weight coroutines and sample-based
profiling, hiding these events in software is within reach.

CCS CONCEPTS

« Software and its engineering — Coroutines; Compilers;
Software system structures; Concurrency control.

KEYWORDS

CPU stall, coroutine, profile-guided yield instrumentation,
asymmetric concurrency

ACM Reference Format:

Zhihong Luo, Silvery Fu, Emmanuel Amaro, Amy Ousterhout,
Sylvia Ratnasamy, and Scott Shenker. 2023. Out of Hand for Hard-
ware? Within Reach for Software!. In Workshop on Hot Topics in
Operating Systems (HOTOS °23), June 22-24, 2023, Providence, RI,

USA. ACM, New York, NY, USA, 8 pages. https://doi.org/10.1145/
3593856.3595898

1 INTRODUCTION

To avoid wasting processor cycles while waiting for the result
of some long event, an effective strategy is to hide the event
latency by concurrently executing independent instructions.
Applying this strategy to either hardware or software, people
have arrived at satisfactory solutions to events with dura-
tions at both ends of the spectrum: for events that take a very
small amount of time (e.g., less than 10 ns), such as L1 misses
and complex arithmetic instructions, hardware mechanisms
like out-of-order executions can efficiently detect them and

This work is licensed under a Creative Commons
Attribution-NoDerivs International 4.0 License.

HOTOS °23, June 22-24, 2023, Providence, RI, USA
© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0195-5/23/06.
https://doi.org/10.1145/3593856.3595898

onboard accelerators

10 ns 100 ns 1us

Event duration
Figure 1: Hiding events of different durations: existing hard-

ware and software mechanisms and our proposal; OoOE: out-of-
order executions, SMT: simultaneous multithreading.

instantaneously interleave instructions to minimize CPU
stalls [2, 59]; for events that run for sufficiently long (e.g.,
over 1 ps), such as disk I/O and using oftboard accelerators
(e.g., GPU), software mechanisms like OS process scheduling
offer great flexibility with reasonable overhead and provide
functionalities like on-demand scaling of concurrency and
fine-grained control over application performance [60, 64].
However, the solution is less clear for events with dura-
tions in the middle of the spectrum, ranging from 10s to 100s
of ns, such as L2 cache misses, memory accesses and opera-
tions with onboard accelerators. Events in this range account
for a significant portion of CPU stalls — some widely-used
modern applications lose more than 60% of all processor
cycles due to memory-bound CPU stalls [3, 13, 31, 62], and
are getting prevalent — there is an increasing number of on-
board accelerators in modern server processors [26, 32]. For
these events, hardware mechanisms like simultaneous mul-
tithreading (SMT) (e.g., Intel’s Hyper-threading) suffer from
limitations due to their lack of flexibility, which is manifested
in two aspects: limited degrees of concurrency and negative
impacts to application performance. In terms of degrees of
concurrency, modern CPUs have only 2 to 8 threads per
physical core, which is insufficient for SMT to fully hide the
latency of events like memory accesses [28, 31, 53], especially
for applications that have large memory footprints and thus
frequently incur cache misses (e.g., data analytics [5, 70, 71]).
In terms of application performance, SMT is known to likely
lead to significantly increased latencies [24, 55, 67, 68]. This
is because SMT focuses solely on multiplexing instruction
streams to best utilize core resources, without explicitly
managing the impacts to application performance, which
the hardware has little visibility to. While there are propos-
als [25, 67] that mitigate these issues by redesigning the hard-
ware (e.g., supporting a large number of software-controlled

https://doi.org/10.1145/3593856.3595898
https://doi.org/10.1145/3593856.3595898
https://doi.org/10.1145/3593856.3595898
https://creativecommons.org/licenses/by-nd/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3593856.3595898&domain=pdf&date_stamp=2023-06-22

HOTOS ’°23, June 22-24, 2023, Providence, RIl, USA

hardware threads), these proposals require significant hard-
ware changes and are thus not feasible today.

Since relying on hardware to handle events of medium
durations is unsatisfactory, how about hiding them in soft-
ware? Unlike hardware mechanisms, software mechanisms
have the flexibility to support high degrees of concurrency
and minimize negative impacts to application latency: the
former is due to using software contexts, and the latter is due
to controlling application performance while hiding events
for CPU efficiency. However, hiding these events in software
is highly challenging due to software’s lack of efficiency, in
the form of large switching overhead and limited event visibil-
ity. In terms of switching overhead, for traditional threads
of executions like OS processes and kernel threads, context
switches take several hundreds of nanoseconds or even a
few microseconds [14, 38], which is prohibitively expensive
for hiding the target events. In terms of event visibility, a
software mechanism must be able to detect the presence of
an event in order to hide it, which is challenging for events
like cache misses that are not exposed to software.

Fortunately, we see a way forward by mitigating the afore-
mentioned inefficiency of software mechanisms via a novel
combination of two emerging techniques: light-weight corou-
tines [17, 44, 63] and sample-based profiling [10, 35, 66]. First,
by adopting cooperative multitasking, light-weight corou-
tines support fast context switchings that take only several
nanoseconds [6, 36], allowing us to interleave coroutine exe-
cutions with low overhead. Second, sample-based profiling
leverages hardware performance counters available in mod-
ern CPUs to sample hardware events of interest in produc-
tion with negligible overhead. The profiled information is
then used to guide instrumentation of coroutines, so that an
instrumented coroutine will appropriately yield to hide the
latency of events. Fundamentally speaking, sample-based
profiling provides software with the much needed visibility
to hardware events, while allowing flexibility based on ap-
plication characteristic. Note that both techniques require
no changes to existing hardware and are getting adopted in
production systems [27, 51, 56, 72], which makes them ideal
building blocks for easily deployable software mechanisms.

To demonstrate the feasibility of this idea, we present a de-
sign proposal targeting L2/L3 cache misses, where we walk
through the set of important design choices that one needs
to make as they try to leverage light-weight coroutines and
profile-guided instrumentations. Our proposed mechanism
is carefully designed to meet three properties that we be-
lieve can facilitate adoption of the mechanism: transparent
interface, general applicability and controllable latency. We
elaborate on the rationale underlying our design choices in
the hope of showing that our proposed design not only fulfills
the desired properties, but more importantly exhibit many
other possibilities future work can explore and investigate.

31

Zhihong Luo et al.

In the rest of this paper, we elaborate on the enabling
techniques of our proposal (§2), present a design for hiding
L2/L3 cache misses (§3) and discuss open questions (§4).

2 ENABLING TECHNIQUES

In our proposal, we leverage two enabling techniques to miti-
gate the aforementioned drawbacks of software mechanisms
- light-weight coroutines to reduce switching overhead and
sample-based profiling to obtain event visibility. Next, we
elaborate on how they improve upon prior techniques and
how these improvements facilitate our proposal.
Light-weight coroutines: coroutines are generalized sub-
routines whose execution can be suspended and resumed.
Context switches of coroutines are orders of magnitudes
cheaper than traditional threads of executions like processes
and kernel threads. Being a user-space mechanism that re-
sides in a single process, coroutine context switch requires
no expensive system calls nor changes to the virtual memory
mapping. Moreover, since the coroutine context switch is ef-
fected by a visible yield function call, it only needs to preserve
a subset of registers (including instruction and stack pointer),
defined by the calling convention, of the current coroutine
and restore those registers of the resumed coroutine [36].
Thanks to these merits, recent coroutine implementations
have brought the context switch latency down to less than
10 ns (e.g., 9 ns for Boost’s fcontext_t [6]). Moreover, there
have been efforts on leveraging compiler support to further
reduce the overhead [16, 46]. For instance, a compiler might
determine a fewer number of registers that need to be pre-
served across a particular context switch. As we will discuss
later, by instrumenting coroutines based on profiled data, our
proposal is amenable to these compiler-side optimizations.
With the low switching overhead of coroutine, there have
been recent works that interleave coroutine executions to
hide memory accesses for pointer-based data structures in
databases [23, 28, 53]. However, they do not address the is-
sue of limited event visibility. Instead, they ask developers
to decide where these events may happen (e.g., loads that
cause cache misses) and hard code event handlers at these lo-
cations (e.g., issuing a prefetch instruction before switching
to a different coroutine) at development time. This approach
however requires significant engineering efforts — inferring
the presence of short events is challenging and error-prone
even for domain experts, and hinders wide adoption — man-
ual rewriting is needed for legacy code. Moreover, as we will
discuss in §3.3, yields inserted by developers are too sparse
to allow fine-grained control over application performance.
Sample-based profiling: profile-guided optimizations (PGO),
also called feedback-driven optimizations (FDO), is a com-
piler optimization technique that uses runtime information
collected via profiling for improving program performance.

Out of Hand for Hardware? Within Reach for Software!

PGO has been proved highly effective for code optimiza-
tions [10, 48, 61]. Early efforts on PGO relied on instru-
mentation based profiling, which requires instrumenting the
application to collect profile information. However, this ap-
proach not only complicates the build process, but also incurs
significant CPU and memory overhead. More importantly,
instrumentation-based profiling cannot easily support our
proposal, because it is hard to obtain visibility into hardware
events like L2/L3 cache misses with only instrumentation.
Fortunately, to increase the adoption of PGO in production
environments, recent work has instead focused on sample-
based profiling [27, 33, 66], which relies on sampling using
hardware performance counters available in modern CPUs,
such as Intel’s Precise Event Based Sampling (PEBS) [1] and
Last Branch Records (LBR) [35]. Sample-based profiling re-
quires no special build and incurs negligible run time over-
head, both of which allows sample-based PGO to be widely
deployed in production environments [10, 22, 48, 50, 51].
Most importantly, as we will elaborate later, sample-based
profiling allows us to conveniently gather information on
hardware events, e.g., where and how frequently these events
occur, which is then used for hiding these events in software.

3 A PROPOSAL

To illustrate how one can hide the latency of short events by
intelligently combining light-weight coroutines and sample-
based profiling, we next propose the design of an easily de-
ployable software mechanism targeting L2/L3 cache misses.

3.1 Requirements

With a focus on deployability, we distill three requirements
that we believe can facilitate adoption of the mechanism.
Transparent interface: the software mechanism should be
transparent to both applications and developers. It should
require no additional rewriting effort from the developer and
should be applicable to any code structured in coroutines.
General applicability: the software mechanism should be
applicable to a wide range of applications and implementa-
tions. Therefore, the mechanism must not depend on features
or assumptions specific to certain programming languages,
application domains, data structures etc. to properly function.
Controllable latency: the software mechanism should al-
low fine-grained control over application latency. It can thus
be used with latency-sensitive applications to simultaneously
achieve low latency and high CPU efficiency.

3.2 Profile-guided yield instrumentation

The proposed software mechanism follows the same pro-
cedure as prior systems that leverage PGO, which involves
three logical steps: (i) running the original code (structured
in coroutines) in production environments and collecting

32

HOTOS ’°23, June 22-24, 2023, Providence, RI, USA

statistics about CPU stalls due to L2/L3 cache misses with
sample-based profiling mechanism, (ii) instrumenting the
coroutines so that they prefetch and yield to hide potential
cache misses according to the profiled data and (iii) using
the finalized code to interleave executions of instrumented
coroutines at run time. Next, we elaborate on the set of de-
sign choices we make to enable transparent interface and
general applicability in steps (i) and (ii). After that, we will
introduce how we ensure controllable latency by supporting
asymmetric concurrency in steps (ii) and (iii).
Hardware events to sample: for profiling, we first need
to decide the set of hardware events to sample, so that the
profiled data is useful to our mechanism. For hiding L2/L3
cache misses that cause CPU stalls, the ideal event would
have informed us the number of stalled cycles due to L2/L3
cache miss for different load instructions. Unfortunately, to
the best of our knowledge, such an event is not supported in
today’s CPUs.! To mitigate this issue, we propose to sample
multiple events and combine their results, instead of relying
on a single event. Specifically, we propose to sample both (i)
load instructions that cause L2/L3 cache misses and (ii) the
stalled cycles. We learn from (i) the set of load instructions
that induce cache misses and correlate that with instruc-
tions causing CPU stalls from (ii), which leads us to load
instructions that likely cause CPU stalls. Additional events
can also be included to filter out stalls due to other reasons
(e.g., front-end stalls due to slow instruction fetching).
Besides the set of hardware events, there are other param-
eters to configure as well, such as the sampling frequency
and the size of the in-memory buffer that temporarily stores
sampled profiles. For these parameters, their corresponding
trade-offs (e.g., higher sampling frequency expedites profile
collections at the cost of higher run time overhead) have
been extensively studied in prior work [1, 47, 50], and our
proposal can follow the established practices here.
Instrumentation level: after sampling hardware events in
step (i), a key design decision we need to make for step (ii) is
at what level in the compilation pipeline we perform instru-
mentation, ranging from source code [9], to the compiler’s
intermediate representations (IR) [10], to the post-linked bi-
nary [50]. Operating at each level comes with its pros and
cons, and prior works on PGO make different choices depend-
ing on their needs. In our case, we propose to instrument
at the binary level for the following two reasons. First, by
instrumenting at the binary level, our mechanism can be
applied to any application or implementation, as it does not
require access to the source code nor restrict developers to
any specific programming languages. Second, operating at

1A similar and supported event is stalled cycles while there are L2/L3 cache
miss demand loads. However, this event does not indicate causal relationship
between cache misses and stalls, and is not precise meaning that the exact
instructions (loads in our case) that caused the event are unavailable.

HOTOS ’°23, June 22-24, 2023, Providence, RIl, USA

the binary level allows us to surgically instrument at the
correct locations. Specifically, since sample-based profiling
collects data at the binary level, it is known that the closer a
level is to the binary representation, the higher the accuracy
with which the profiled data can be mapped back to that
representation [10, 11, 50]. To see this, consider a function
that is inlined at multiple locations. If the profiled data indi-
cates that instrumentation is needed at one of the locations
but not others, we can easily do that at the binary level, but
will have difficulty retrofitting the data back to higher-level
representations and correctly instrumenting at that level if
function inlining has not been performed yet.

While instrumenting at the binary level brings benefits

in terms of applicability and accuracy, it does suffer from
some limitations. One of them is relinquishing potential
optimization opportunities along the compilation pipeline.
Fortunately, as we will discuss next, operating at the binary
level still permits optimizations that can significantly im-
prove the performance of our mechanism. Another general
concern is the inability to perform operations that require
high-level semantic information. Fortunately, the logic of in-
strumenting yields to hide L2/L3 cache misses is independent
from the application logic or program structure.
Yield instrumentation: after deciding the sampled hard-
ware events and the instrumentation level, we next discuss
design problems that are directly related to instrumenting
yields to hide L2/L3 cache misses. We will not go into details
of the procedures in the instrumentation pipeline, such as
disassembly and control flow graph (CFG) construction, for
which our mechanism should be similar to existing binary
optimizers [7, 50, 51]. Instead, we elaborate on three aspects
specific to our use case: the conditions under which a yield
will be inserted at a location, the operations to instrument at
these locations, and optimizations to reduce overhead.

In terms of the conditions to insert yields, there is a trade-
off: aggressive instrumentation minimizes CPU stalls due to
uninstrumented cache misses, at the risk of incurring unnec-
essary overhead if a load turns out to be a cache hit. To make
better decisions in the face of this trade-off, we propose to
quantitatively model the gain and the cost of instrumenting
at a specific load instruction. This requires some statistics
that are either estimated from the collected profiles (e.g., the
likelihood of cache misses for a load instruction) or extracted
from the machine characteristics (e.g., the average latency of
an L2/L3 cache miss). Based on the statistics and modelling,
one could then decide whether to place yields based on dif-
ferent policies. A simple policy, for example, is to instrument
yields if the likelihood of cache misses is above a threshold.

Once we decide to yield at a specific load instruction, the
following operations are instrumented: (i) prefetching the
requested cache line before yielding, (ii) saving registers
to memory and setting the stack pointer and the program

33

Zhihong Luo et al.

counter to the ones of the next coroutine and (iii) restoring
registers from the memory (since the coroutine is resumed
at this point). These instrumentations ensure that the corou-
tine can correctly yield to a different one to hide the cache
misses. Various optimizations could then be applied to re-
duce the overhead due to instrumentations. One potential
optimization is to identify registers whose values will be
used later via a register liveness analysis [45, 52] and only
preserve the values of these registers. This directly translates
to less switching overhead. Another interesting optimization
is yield coalescing, which is applicable when instrumenting
multiple independent and adjacent loads. Specifically, instead
of inserting a yield for every load, we could issue prefetches
all together and instrument only a single yield to amortize
the switching overhead. Independence of adjacent loads can
be determined via dependence analysis [4, 43].

3.3 Asymmetric concurrency

Profile-guided yield instrumentation, as we described above,
hopefully allows us to hide L2/L3 cache misses in a way
that is transparent to developers and applicable to a wide
range of applications. However, it does not support fine-
grained control over application latency. To see this, consider
a case where we need to ensure low latency of a high-priority
coroutine, while improving CPU efficiency by interleaving
with executions of other coroutines. To support this use case,
what we need is for other coroutines to yield back to the high-
priority coroutine as soon as they have run for long enough
to hide the latency of L2/L3 cache misses. However, the
instrumentation mechanism described so far, which we call
primary instrumentation, places yields only at locations that
likely have cache misses. As a consequence, adjacent yields
can be arbitrarily far apart depending on the application,
preventing a coroutine from timely relinquishing the CPU.
Fundamentally speaking, our proposal has to reconcile
two seemingly conflicting needs: sparse instrumentation
(i.e., only inserting yields to hide cache misses) for improv-
ing CPU efficiency with minimal overhead, and dense in-
strumentation for managing the latency impact on yielded
coroutines. As a solution, we propose to support asymmetric
concurrency, which consists of two components. First, after
primary instrumentation, we add a scavenger instrumenta-
tion phase, where we strategically place additional yields to
ensure appropriate distance between adjacent yields. These
yields are conditional, hence can be turned on and off to alter
the mode of a coroutine at run time. Second, at run time, we
leverage coroutines in scavenger mode to hide cache misses,
while incurring minimal latency overhead to coroutines in
primary mode. Considering the previously discussed case, we
can now achieve both high CPU efficiency and low latency
of the high-priority coroutine by running the high-priority

Out of Hand for Hardware? Within Reach for Software!

coroutine in the primary mode and other coroutines in the
scavenger mode. Next, we elaborate on the challenges associ-
ated with these two components and discuss our proposals.
Scavenger instrumentation: at this phase, the user pro-
vides a target inter-yield interval that is bounded but suffi-
cient to hide L2/L3 cache misses (e.g., 100 ns), and our goal
is to ensure that adjacent yields are separated approximately
this far. Achieving this goal with only static analysis is chal-
lenging: the latency of a basic block is hard to predict [19, 54]
and there can be multiple paths of vastly different lengths
between two basic blocks [18, 41]. Inspired by efforts in
trace scheduling [12, 20, 39], a technique that uses profiling
information for static instruction scheduling, we propose
to leverage profiling for scavenger instrumentation as well.
Specifically, profiling mechanisms like Intel’s LBR can extract
information like the latency of a basic block and the common
paths in the program [34, 35]. With profiled data, we could
first insert yields to ensure timely yielding in the common
case, then augment it with additional yields to bound the
worst-case inter-yield interval based on static analysis.

After the scavenger phase, we now have the final instru-
mented binary, which contains both primary yields for hiding
cache misses and (conditional) scavenger yields for timely
yielding. Scavenger yields are carefully placed to ensure ap-
propriate inter-yield distances, whereas primary yields may
be too close to or far from each other as their locations are
determined by the application memory access patterns.
Dual-mode execution: at run time, we propose dual-mode
execution: (i) a primary coroutine yields to scavenger corou-
tines in the face of a potential cache miss, and (ii) scavenger
coroutines will yield back to the primary once they have
run for long enough to hide the cache miss. For (ii), our
mechanism should scale up the number of scavenger corou-
tines on demand. Specifically, in the normal case, a single
scavenger coroutine is sufficient — the coroutine will run for
some time until it encounters a yield instrumented at the
scavenger phase, at which point the coroutine can directly
yield back to the primary coroutine. In other cases, multiple
scavenger coroutines may need to be invoked before return-
ing to the primary. This is because a scavenger coroutine
may encounter a yield that was instrumented at the primary
phase for hiding cache misses too early, in which case it will
instead yield to another scavenger to consume more cycles.
For example, for a coroutine that performs pointer chasing,
when operating in the scavenger mode, it has to rely on other
scavenger coroutines in order to fully utilize the CPU.

To summarize, we believe that some form of asymmetric
concurrency is critical for ensuring low latency with high
CPU efficiency. With our proposed design, we hope to shed
light on the design space that future work can explore, which
likely involves co-design of offline profiling, profile-guided
instrumentation and runtime control.

34

HOTOS ’°23, June 22-24, 2023, Providence, RI, USA

4 DISCUSSION

Now that we have proposed a way of hiding short events
in software, we discuss two important questions: (i) if we
could make changes to the hardware, what would the final
solution look like? and (ii) how could our proposal coexist
with software mechanisms designed for other purposes?

4.1 Hardware support

To make our proposal feasible, we have restricted ourselves
to techniques supported by today’s hardware. An interesting
question is then: what if we lift this restriction and envision
a hardware-software co-design? To approach this question,
we proceed with a software-centric view and look for the
minimal hardware support that will significantly benefit
our proposal. For this, we re-examine the two aspects that
software mechanisms fall short in, i.e., large switching over-
head and limited event visibility, and discuss to what extent
additional hardware support will be helpful to our proposal.

For switching overhead, we conjecture that it is not the
most critical issue, given the possible software optimizations
that could further reduce the overhead of coroutine switch-
ing [16, 46]. Specifically, while switching software contexts
requires storing/restoring register states to/from memory, it
supports high degrees of concurrency and fine-grained con-
trol, both of which are hard to obtain in hardware without a
significant hardware redesign. Moreover, since our proposal
targets events that last for 10s to 100s of ns, the sub-10 ns
overhead of coroutine switching is acceptable.

In contrast, we believe that event visibility is the aspect
that should receive more attention, where significant im-
provement may be achievable with modest hardware changes.
Solely relying on profile-guided instrumentation for detect-
ing and hiding events is sub-optimal due to its static nature
- whether a coroutine will yield at a location or not is deter-
mined offline. Therefore, hardware support to expose events,
e.g., indicating whether a cache line is in L1/L2 cache, could
be highly useful here, as it allows yields to be conditional on
whether targeted events actually happen. While condition
checking adds some overhead, profile-guided instrumenta-
tion can mitigate this issue by placing conditional yields only
at locations that often but not always incur target events.

4.2 Software integration

Runtime scheduling: an interesting question is how to inte-
grate our proposed mechanism with existing coroutine sched-
ulers [21, 72] whose logic is agnostic to short events. One ap-
proach is to run our mechanism on the side of the scheduler
and have the scheduler perform only a minimal set of addi-
tional tasks to support event hiding. For example, the sched-
uler could expose the set of coroutines in its ready queue,
so that our mechanism knows that they can be switched

HOTOS ’°23, June 22-24, 2023, Providence, RIl, USA

to when hiding events. A different approach is to have the
scheduler explicitly consider these short events when sched-
uling tasks. This is conceptually similar to how I/O events
receive special treatment in OS process scheduling. This ap-
proach could be appealing when performing fine-grained
scheduling of very short (e.g., #s-scale) tasks [15, 30, 49].
Coroutine isolation: there are two categories of isolation
mechanisms suitable for coroutines: software-based fault
isolation (SFI) and language-based isolation. SFI establishes
a logical protection domain by inserting dynamic checks
before memory and control-transfer instructions [58, 65, 69].
Language-based isolation relies on safe high-level languages
for isolation through a combination of static and dynamic
checks [37,40, 57]. Language-based isolations can have lower
runtime overhead by adopting restricted memory models
and performing most of the checks at compile time [8, 29, 42].
However, adopting language-based isolations requires more
engineering efforts, due to the need of developing based
on restricted memory models and rewriting legacy code.
Since our proposal is applicable to different programming
languages, it can co-exist with either isolation mechanism.
An interesting question is whether a co-design of SFI and
our proposal can help reduce the runtime overhead of SFL

5 CONCLUSION

With light-weight coroutines and sample-based profiling,
hiding short events that last only 10s to 100s of ns in software
is becoming feasible. By walking through a design proposal,
we shed light on the challenges that arise from leveraging
these two techniques, and hopefully offer some promising
directions towards addressing these challenges.

REFERENCES

[1] Soramichi Akiyama and Takahiro Hirofuchi. 2017. Quantitative eval-
uation of intel pebs overhead for online system-noise analysis. In
Proceedings of the 7th International Workshop on Runtime and Operat-
ing Systems for Supercomputers ROSS 2017. 1-8.

Haitham Akkary and Michael A Driscoll. 1998. A dynamic multi-
threading processor. In Proceedings. 31st Annual ACM/IEEE Interna-
tional Symposium on Microarchitecture. IEEE, 226-236.

Grant Ayers, Jung Ho Ahn, Christos Kozyrakis, and Parthasarathy
Ranganathan. 2018. Memory hierarchy for web search. In 2018 IEEE
International Symposium on High Performance Computer Architecture
(HPCA). IEEE, 643-656.

Utpal Banerjee. 1997. Dependence analysis. Vol. 3. Springer Science &
Business Media.

Laurent Bindschaedler, Jasmina Malicevic, Nicolas Schiper, Ashvin
Goel, and Willy Zwaenepoel. 2018. Rock you like a hurricane: Taming
skew in large scale analytics. In Proceedings of the Thirteenth EuroSys
Conference. 1-15.

[6] Boost. 2022. Performance of Boost context switch. https:
//www.boost.org/doc/libs/1_79_0/libs/context/doc/html/context/
performance.html.

Derek Bruening, Timothy Garnett, and Saman Amarasinghe. 2003.
An infrastructure for adaptive dynamic optimization. In International

35

Zhihong Luo et al.

Symposium on Code Generation and Optimization, 2003. CGO 2003.

IEEE, 265-275.

Anton Burtsev, Dan Appel, David Detweiler, Tianjiao Huang, Zhaofeng

Li, Vikram Narayanan, and Gerd Zellweger. 2021. Isolation in Rust:

What is Missing?. In Proceedings of the 11th Workshop on Programming

Languages and Operating Systems. 76-83.

Pohua P Chang, Scott A Mahlke, William Y Chen, and Wen-Mei W

Hwu. 1992. Profile-guided automatic inline expansion for C programs.

Software: Practice and Experience 22, 5 (1992), 349-369.

Dehao Chen, David Xinliang Li, and Tipp Moseley. 2016. AutoFDO:

Automatic feedback-directed optimization for warehouse-scale appli-

cations. In Proceedings of the 2016 International Symposium on Code

Generation and Optimization. 12-23.

Dehao Chen, Neil Vachharajani, Robert Hundt, Xinliang Li, Stephane

Eranian, Wenguang Chen, and Weimin Zheng. 2011. Taming hardware

event samples for precise and versatile feedback directed optimizations.

IEEE Trans. Comput. 62, 2 (2011), 376-389.

Robert P. Colwell, Robert P. Nix, John J. O’Donnell, David B. Papworth,

and Paul K. Rodman. 1988. A VLIW architecture for a trace scheduling

compiler. IEEE Transactions on computers 37, 8 (1988), 967-979.

Charlie Curtsinger and Emery D Berger. 2015. Coz: Finding code that

counts with causal profiling. In Proceedings of the 25th Symposium on

Operating Systems Principles. 184-197.

Francis M David, Jeffrey C Carlyle, and Roy H Campbell. 2007. Context

switch overheads for Linux on ARM platforms. In Proceedings of the

2007 workshop on Experimental computer science. 3—es.

HM Demoulin and J Fried. 2021. When Idling is Ideal: Optimizing Tail-

Latency for Highly-Dispersed Datacenter Workloads with Persephone.

In ACM Symposium on Operating Systems Principles (SOSP).

[16] Stephen Dolan, Servesh Muralidharan, and David Gregg. 2013. Com-

piler support for lightweight context switching. ACM Transactions on

Architecture and Code Optimization (TACO) 9, 4 (2013), 1-25.

Roman Elizarov, Mikhail Belyaev, Marat Akhin, and Ilmir Usmanov.

2021. Kotlin coroutines: design and implementation. In Proceedings of

the 2021 ACM SIGPLAN International Symposium on New Ideas, New

Paradigms, and Reflections on Programming and Software. 68—84.

Mohammad Hossein Fazel Zarandi, Ali Akbar Sadat Asl, Shahabed-

din Sotudian, and Oscar Castillo. 2020. A state of the art review of

intelligent scheduling. Artificial Intelligence Review 53 (2020), 501-593.

Christian Ferdinand and Reinhold Heckmann. 2004. ait: Worst-case

execution time prediction by static program analysis. In Building the

Information Society: IFIP 18th World Computer Congress Topical Sessions

22-27 August 2004 Toulouse, France. Springer, 377-383.

[20] Joseph A. Fisher. 1981. Trace scheduling: A technique for global

microcode compaction. IEEE transactions on computers 30, 07 (1981),

478-490.

Panagiotis Garefalakis, Konstantinos Karanasos, and Peter Pietzuch.

2019. Neptune: Scheduling suspendable tasks for unified stream/batch

applications. In Proceedings of the ACM symposium on cloud computing.

233-245.

Google. 2020. Propeller: Profile Guided Optimizing Large Scale LLVM-

based Relinker. https://github.com/google/llvm-propeller.

Yongjun He, Jiacheng Lu, and Tianzheng Wang. 2020. CoroBase:

coroutine-oriented main-memory database engine. Proceedings of the

VLDB Endowment 14, 3 (2020), 431-444.

[24] Joel Hruska. 2012. Maximized performance: Comparing the effects of
Hyper-Threading, software updates. https://www.extremetech.com/
computing/133121-maximized-performance-comparing-the-effects-
of-hyper-threading-software-updates.

[25] Jack Tigar Humphries, Kostis Kaffes, David Maziéres, and Christos
Kozyrakis. 2021. A case against (most) context switches. In Proceedings
of the Workshop on Hot Topics in Operating Systems. 17-25.

8

—

[9

—

[10]

[11]

[12]

[13]

[14]

[15]

[17]

[18]

[19]

[21]

[22]

[23]

https://www.boost.org/doc/libs/1_79_0/libs/context/doc/html/context/performance.html
https://www.boost.org/doc/libs/1_79_0/libs/context/doc/html/context/performance.html
https://www.boost.org/doc/libs/1_79_0/libs/context/doc/html/context/performance.html
https://github.com/google/llvm-propeller
https://www.extremetech.com/computing/133121-maximized-performance-comparing-the-effects-of-hyper-threading-software-updates
https://www.extremetech.com/computing/133121-maximized-performance-comparing-the-effects-of-hyper-threading-software-updates
https://www.extremetech.com/computing/133121-maximized-performance-comparing-the-effects-of-hyper-threading-software-updates

Out of Hand for Hardware? Within Reach for Software!

[26]

[27]

[28

—

[29

—

(30

[t

[31

—

(32

—

(33

=

(34]
(35]

(36

—

(37]

(38

=

(39]

[40

[t

[41

—

[42

—

[43

=

[44]

Intel. 2022. Intel Accelerator Engines. https://www.intel.com/content/
www/us/en/products/docs/accelerator-engines/overview.html.

Saba Jamilan, Tanvir Ahmed Khan, Grant Ayers, Baris Kasikci, and
Heiner Litz. 2022. Apt-get: Profile-guided timely software prefetching.
In Proceedings of the Seventeenth European Conference on Computer
Systems. 747-764.

Christopher Jonathan, Umar Farooq Minhas, James Hunter, Justin
Levandoski, and Gor Nishanov. 2018. Exploiting coroutines to attack
the" killer nanoseconds". Proceedings of the VLDB Endowment 11, 11
(2018), 1702-1714.

Ralf Jung, Jacques-Henri Jourdan, Robbert Krebbers, and Derek Dreyer.
2017. RustBelt: Securing the foundations of the Rust programming
language. Proceedings of the ACM on Programming Languages 2, POPL
(2017), 1-34.

Kostis Kaffes, Timothy Chong, Jack Tigar Humphries, Adam Belay,
David Maziéres, and Christos Kozyrakis. 2019. Shinjuku: Preemptive
scheduling for usecond-scale tail latency. In 16th USENIX Symposium
on Networked Systems Design and Implementation (NSDI 19). 345-360.
Svilen Kanev, Juan Pablo Darago, Kim Hazelwood, Parthasarathy Ran-
ganathan, Tipp Moseley, Gu-Yeon Wei, and David Brooks. 2015. Pro-
filing a warehouse-scale computer. In Proceedings of the 42nd Annual
International Symposium on Computer Architecture. 158-169.

Patrick Kennedy. 2022. Intel Xeon Sapphire Rapids Shows Built-in Ac-
celerators at Innovation 2022. https://www.servethehome.com/intel-
xeon-sapphire-rapids-shows-built-in-accelerators-at-innovation-
2022/.

Tanvir Ahmed Khan, Akshitha Sriraman, Joseph Devietti, Gilles Pokam,
Heiner Litz, and Baris Kasikei. 2020. I-spy: Context-driven conditional
instruction prefetching with coalescing. In 2020 53rd Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO). IEEE, 146-159.
Andi Kleen. 2016. Advanced usage of last branch records. https:
//lwn.net/Articles/680996/.

Andi Kleen. 2016. An introduction to last branch records. https:
//lwn.net/Articles/680985/.

Oliver Kowalke and Nat Goodspeed. 2018. fiber_handle-fibers without
scheduler. (2018).

Dexter Kozen. 1999. Language-Based Security: Invited Lecture. In
Mathematical Foundations of Computer Science 1999: 24th International
Symposium, MFCS’99 Szklarska Poreba, Poland, September 6—10, 1999
Proceedings 24. Springer, 284-298.

Chuanpeng Li, Chen Ding, and Kai Shen. 2007. Quantifying the cost
of context switch. In Proceedings of the 2007 workshop on Experimental
computer science. 2—es.

P Geoffrey Lowney, Stefan M Freudenberger, Thomas] Karzes, WD
Lichtenstein, Robert P Nix, John S O’donnell, and John C Ruttenberg.
1993. The multiflow trace scheduling compiler. The journal of Super-
computing 7 (1993), 51-142.

Sergio Maffeis and Ankur Taly. 2009. Language-based isolation of
untrusted Javascript. In 2009 22nd IEEE Computer Security Foundations
Symposium. IEEE, 77-91.

Abid M Malik, Jim McInnes, and Peter Van Beek. 2008. Optimal ba-
sic block instruction scheduling for multiple-issue processors using
constraint programming. International journal on artificial intelligence
tools 17, 01 (2008), 37-54.

Nicholas D Matsakis and Felix S Klock. 2014. The rust language. ACM
SIGAda Ada Letters 34, 3 (2014), 103-104.

Dror E Maydan, John L Hennessy, and Monica S Lam. 1991. Effi-
cient and exact data dependence analysis. In Proceedings of the ACM
SIGPLAN 1991 conference on Programming language design and imple-
mentation. 1-14.

Ana Lucia De Moura and Roberto Ierusalimschy. 2009. Revisiting
coroutines. ACM Transactions on Programming Languages and Systems

36

[45]
[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

HOTOS ’°23, June 22-24, 2023, Providence, RI, USA

(TOPLAS) 31, 2 (2009), 1-31.

Robert Muth. 1998. Register liveness analysis of executable code.
Manuscript, Dept. of Computer Science, The University of Arizona, Dec
(1998).

Gor Nishanov. 2018. C++ Extensions for Coroutines. (2018).

Aleix Roca Nonell, Balazs Gerofi, Leonardo Bautista-Gomez, Do-
minique Martinet, Viceng Beltran Querol, and Yutaka Ishikawa. 2018.
On the applicability of PEBS based online memory access tracking for
heterogeneous memory management at scale. In Proceedings of the
Workshop on Memory Centric High Performance Computing. 50-57.
Guilherme Ottoni and Bertrand Maher. 2017. Optimizing function
placement for large-scale data-center applications. In 2017 IEEE/ACM
International Symposium on Code Generation and Optimization (CGO).
IEEE, 233-244.

Amy Ousterhout, Joshua Fried, Jonathan Behrens, Adam Belay, and
Hari Balakrishnan. 2019. Shenango: Achieving High CPU Efficiency for
Latency-sensitive Datacenter Workloads.. In NSDI, Vol. 19. 361-378.
Maksim Panchenko, Rafael Auler, Bill Nell, and Guilherme Ottoni.
2019. Bolt: a practical binary optimizer for data centers and beyond.
In 2019 IEEE/ACM International Symposium on Code Generation and
Optimization (CGO). IEEE, 2-14.

Maksim Panchenko, Rafael Auler, Laith Sakka, and Guilherme Ottoni.
2021. Lightning bolt: powerful, fast, and scalable binary optimization.
In Proceedings of the 30th ACM SIGPLAN International Conference on
Compiler Construction. 119-130.

Mark Probst, Andreas Krall, and Bernhard Scholz. 2002. Register
liveness analysis for optimizing dynamic binary translation. In Ninth
Working Conference on Reverse Engineering, 2002. Proceedings. IEEE,
35-44.

Georgios Psaropoulos, Thomas Legler, Norman May, and Anastasia
Ailamaki. 2017. Interleaving with coroutines: a practical approach
for robust index joins. Proceedings of the VLDB Endowment 11, CONF
(2017), 230-242.

Peter Puschner and Alan Burns. 2000. Guest editorial: A review of
worst-case execution-time analysis. Real-Time Systems 18, 2-3 (2000),
115-128.

Steven E Raasch and Steven K Reinhardt. 1999. Applications of thread
prioritization in SMT processors. In Proc. of the Workshop on Multi-
threaded Execution And Compilation. Citeseer.

Gang Ren, Eric Tune, Tipp Moseley, Yixin Shi, Silvius Rus, and Robert
Hundt. 2010. Google-wide profiling: A continuous profiling infrastruc-
ture for data centers. IEEE micro 30, 4 (2010), 65-79.

Fred B Schneider, Greg Morrisett, and Robert Harper. 2001. A language-
based approach to security. Informatics: 10 Years Back, 10 Years Ahead
(2001), 86-101.

David Sehr, Robert Muth, Cliff L Biffle, Victor Khimenko, Egor Pasko,
Bennet Yee, Karl Schimpf, and Brad Chen. 2010. Adapting software
fault isolation to contemporary CPU architectures. (2010).

John Paul Shen and Mikko H Lipasti. 2013. Modern processor design:
fundamentals of superscalar processors. Waveland Press.

Abraham Silberschatz, James L Peterson, and Peter B Galvin. 1991.
Operating system concepts. Addison-Wesley Longman Publishing Co.,
Inc.

Michael D Smith. 2000. Overcoming the challenges to feedback-
directed optimization (keynote talk). In Proceedings of the ACM SIG-
PLAN workshop on Dynamic and adaptive compilation and optimization.
1-11.

Akshitha Sriraman, Abhishek Dhanotia, and Thomas F Wenisch. 2019.
Softsku: Optimizing server architectures for microservice diversity@
scale. In Proceedings of the 46th International Symposium on Computer
Architecture. 513-526.

https://www.intel.com/content/www/us/en/products/docs/accelerator-engines/overview.html
https://www.intel.com/content/www/us/en/products/docs/accelerator-engines/overview.html
https://www.servethehome.com/intel-xeon-sapphire-rapids-shows-built-in-accelerators-at-innovation-2022/
https://www.servethehome.com/intel-xeon-sapphire-rapids-shows-built-in-accelerators-at-innovation-2022/
https://www.servethehome.com/intel-xeon-sapphire-rapids-shows-built-in-accelerators-at-innovation-2022/
https://lwn.net/Articles/680996/
https://lwn.net/Articles/680996/
https://lwn.net/Articles/680985/
https://lwn.net/Articles/680985/

HOTOS ’°23, June 22-24, 2023, Providence, RIl, USA

(63]

[64

=

(65]

(66

=

—

(67

Lukas Stadler, Thomas Wiirthinger, and Christian Wimmer. 2010. Effi-
cient coroutines for the Java platform. In Proceedings of the 8th Inter-
national Conference on the Principles and Practice of Programming in
Java. 20-28.

William Stallings. 1998. Operating systems internals and design princi-
ples. Prentice-Hall, Inc.

Gang Tan et al. 2017. Principles and implementation techniques of
software-based fault isolation. Foundations and Trends® in Privacy and
Security 1, 3 (2017), 137-198.

Dan Terpstra, Heike Jagode, Haihang You, and Jack Dongarra. 2010.
Collecting performance data with PAPI-C. In Tools for High Perfor-
mance Computing 2009: Proceedings of the 3rd International Workshop
on Parallel Tools for High Performance Computing, September 2009, ZIH,
Dresden. Springer, 157-173.

Dean M Tullsen and Jeffery A Brown. 2001. Handling long-latency
loads in a simultaneous multithreading processor. In Proceedings. 34th
ACM/IEEE International Symposium on Microarchitecture. MICRO-34.
IEEE, 318-327.

37

[68]

[69]

[70]

[71]

[72]

Zhihong Luo et al.

Antonio Valles, Matt Gillespie, and Garrett Drysdale. 2009. Per-
formance insights to Intel® hyper-threading technology. Source:<
https://software. intel. com/enus/articles/performance-insights-to-intel-
hyper-threadingtechnology (2009).

Robert Wahbe, Steven Lucco, Thomas E Anderson, and Susan L Gra-
ham. 1993. Efficient software-based fault isolation. In Proceedings of the
fourteenth ACM symposium on Operating systems principles. 203-216.
Matei Zaharia, Mosharaf Chowdhury, Michael J Franklin, Scott
Shenker, Ion Stoica, et al. 2010. Spark: Cluster computing with working
sets. HotCloud 10, 10-10 (2010), 95.

Haoyu Zhang, Brian Cho, Ergin Seyfe, Avery Ching, and Michael J
Freedman. 2018. Riffle: Optimized shuffle service for large-scale data
analytics. In Proceedings of the Thirteenth EuroSys Conference. 1-15.
Irene Zhang, Amanda Raybuck, Pratyush Patel, Kirk Olynyk, Jacob
Nelson, Omar S Navarro Leija, Ashlie Martinez, Jing Liu, Anna Korn-
feld Simpson, Sujay Jayakar, et al. 2021. The demikernel datapath os
architecture for microsecond-scale datacenter systems. In Proceedings
of the ACM SIGOPS 28th Symposium on Operating Systems Principles.
195-211.

	Abstract
	1 Introduction
	2 Enabling techniques
	3 A Proposal
	3.1 Requirements
	3.2 Profile-guided yield instrumentation
	3.3 Asymmetric concurrency

	4 Discussion
	4.1 Hardware support
	4.2 Software integration

	5 Conclusion
	References

