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Abstract
Datacenter operators today strive to support microsecond-

latency applications while also using their limited CPU re-
sources as efficiently as possible. To achieve this, several
recent systems allow multiple applications to run on the same
server, granting each a dedicated set of cores and reallocating
cores across applications over time as load varies. Unfortu-
nately, many of these systems do a poor job of navigating
the tradeoff between latency and efficiency, sacrificing one or
both, especially when handling tasks as short as 1 µs.

While the implementations of these systems (threading li-
braries, network stacks, etc.) have been heavily optimized,
the policy choices that they make have received less scrutiny.
Most systems implement a single choice of policy for allo-
cating cores across applications and for load-balancing tasks
across cores within an application. In this paper, we use simu-
lations to compare these different policy options and explore
which yield the best combination of latency and efficiency.
We conclude that work stealing performs best among load-
balancing policies, multiple policies can perform well for
core allocations, and, surprisingly, static core allocations of-
ten outperform reallocation with small tasks. We implement
the best-performing policy choices by building on Caladan,
an existing core-allocating system, and demonstrate that they
can yield efficiency improvements of up to 13-22% without
degrading (median or tail) latency.

1 Introduction
Modern datacenter applications often involve many short Re-
mote Procedure Calls (RPCs) to other servers. These RPCs
allow applications with large memory footprints to access
memory on other servers [2, 49, 51, 62, 69], enable appli-
cations to leverage large amounts of compute over short
timescales [6, 25, 46], and provide replication and consen-
sus [58]. The service times of these tasks grow ever smaller,
and today are often a single microsecond or less [10, 34].

Tasks with short service times are particularly vulnerable
to latency inflation; even small overheads can increase the
latency of a 1 µs task by an order of magnitude [10]. This is
problematic for today’s applications, which depend on low la-
tency both at the median and at the tail of the distribution (e.g.,
99% latency) [5, 19]. As a result, researchers have proposed
many techniques to reduce the overheads of handling these
short tasks. These systems improve software with low-latency
network stacks and better load balancing (DPDK [1], Zy-
gOS [66], Shinjuku [36], eRPC [38], etc.) or propose new
hardware to deliver packets to cores more quickly (RPC-

Valet [18], NeBuLa [74], NanoPU [34], Cerebros [65]). They
offer tail latencies of a few dozen microseconds with existing
hardware [26, 38] or several microseconds with new hard-
ware [34].

However, as Moore’s Law slows [23], datacenter opera-
tors are increasingly concerned not just with providing low
latency but also with achieving high CPU efficiency [79]. To
do so, they pack multiple applications on the same server so
that background applications can use any CPU cycles not
used by latency-sensitive applications, as their load varies
over time [11, 35, 80]. Several recent research systems enable
this deployment model by allocating a set of cores to each
application and then reallocating cores across applications
as load changes (e.g., IX [12], PerfISO [35], Arachne [67],
Shenango [60], Caladan [26], and Fred [40]). These sys-
tems walk a delicate tightrope, attempting to make spare
cycles available for batch applications without harming the
latency or throughput of latency-sensitive applications. Thus
researchers have heavily optimized these systems’ implemen-
tations, squeezing spare CPU cycles and extraneous cache
misses out of their network stacks, threading libraries, and
core-allocation mechanisms.

While there have been significant advances in these mech-
anisms, less effort has gone into studying the policies that
these core-reallocating systems implement. Each system im-
plements two main policies: (1) a policy for load-balancing
tasks across cores within an application and (2) a policy for
when to reallocate cores from one application to another.
There are many possible choices for each policy: popular load-
balancing policies include work stealing [14], work shedding,
and steering tasks to less-loaded cores when they are first
enqueued [55] while core-allocation policies may be based on
queueing delay [12, 26, 60], the arrival of new tasks [40], or
CPU utilization [35,67]. And yet, each system typically imple-
ments a single choice of load-balancing and core-allocation
policy, providing little clarity about how different policies
compare.

Unfortunately, as we will show (§2), these policy choices
can contribute to suboptimal performance, with existing sys-
tems sacrificing significant CPU efficiency in order to main-
tain low latency, especially with short tasks. The root of the
problem is that as task durations shrink from 100 µs to 1 µs,
the overheads of balancing tasks or reallocating cores (e.g., a
50 ns cache miss to probe state on a different core) become
relatively more significant, and inefficient policies become
much more costly. In this paper, we focus on these policies
and ask: what load-balancing and core-allocation policies
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yield the best combination of latency (median and tail) and
CPU efficiency for microsecond-scale tasks?

We focus on the combination of latency and efficiency
because while ideally we would like to optimize both, there is
an inherent tradeoff between the two. For example, allocating
infinite cores could achieve optimal latency at the cost of
terrible efficiency, while allocating a single core could achieve
good (but perhaps not optimal) efficiency, but potentially high
latency. The best one can hope for is to operate on the Pareto
frontier of latency and efficiency; i.e., a point where it is not
possible to improve one quantity without harming the other.

To compare policies fairly and independently from any
specific implementation, we turn to simulations (§4). We use
measurements of real systems to estimate the overheads of
balancing tasks across cores within an application and of re-
allocating cores across applications. We then model simple
versions of common load-balancing and core-allocation poli-
cies, and simulate them using our estimated overheads. We
use these simulations to conduct an extensive factor analysis,
teasing apart the impact of load-balancing policies and core-
allocation policies on both latency and efficiency. From this
analysis, we glean three key insights:

First, assuming commodity NIC hardware, work stealing
is the load-balancing policy that yields the best latency and
CPU efficiency and forms the Pareto frontier. We find that
this conclusion is remarkably robust across different average
service times, service time distributions, numbers of cores,
latency metrics (e.g., median vs. 99%), whether cores are dy-
namically reallocated or statically partitioned, and how much
overhead load-balancing a task entails.

Second, in contrast, our analysis of core-allocation poli-
cies shows that multiple policies can perform similarly well
(though some policies perform significantly worse). We find
that revoking cores proactively, rather than waiting until they
go idle to yield them to another application, makes it easier to
achieve good efficiency with small tasks, especially with many
cores. We identify two policies (based on average queueing
delay and average CPU utilization) that fit this criteria, per-
form well, and can be configured to make different tradeoffs
along the Pareto frontier; two other policies used in current
systems yielded worse latency, CPU efficiency, or both.

Third, even with the best core-allocation policies, if the
average load is fixed, with small tasks it is difficult to achieve
better performance by reallocating cores than by allocating
a fixed number of cores. For our request patterns (modeled
with exponentially-distributed inter-arrival times), reallocat-
ing cores in response to transient bursts does not improve
latency (median or tail) relative to statically allocating the
same average number of cores. Thus the main benefit of re-
allocating cores over short timescales with short tasks is the
ability to quickly adapt to changes in average load. In con-
trast, when average task service times are longer—several
microseconds or more—we find that reallocating cores does
improve performance even with constant average load.
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Figure 1: Total useful work done by two colocated applications—
one background, the other handling small (about 1 µs) memcached
tasks—as we vary memcached’s load (for two existing systems).

From this factor analysis we conclude that barring technol-
ogy changes (e.g., commercialization of recently proposed
NIC hardware [18, 34, 65, 74]), for low latency and high CPU
efficiency, work stealing is the best load-balancing policy, and
our two new core-allocation policies based on average delay
or average utilization (we refer to these policies as “delay
range” and “utilization range”) perform best. We implement
these policies in a real system by extending Caladan [26], a
state-of-the-art system for reallocating cores which already
supports work stealing. We demonstrate that when running
memcached, a key-value store, delay range and utilization
range can save up to 13-22% of cores relative to Shenango’s
and Caladan’s core-allocation policies, without degrading me-
dian or tail latency (§6).

2 Motivation
To demonstrate the inefficiencies of existing systems when
handling short tasks, we conduct an experiment in which we
run two applications on a server: a latency-sensitive applica-
tion that handles short tasks and a background application that
consumes all extra CPU cycles. We use memcached [49], a
key-value store with service times of about 1 µs, as our latency-
sensitive application. We vary the offered rate of memcached
tasks and measure how much useful application-level work
each application completes. We perform this experiment with
two existing systems: Arachne [67] and Caladan [26].

Both systems yield latency improvements: Arachne’s 99%
latency improves on that of Linux by hundreds of microsec-
onds, while Caladan reduces this further, due partially to re-
placing Linux’s network stack with kernel bypass. However,
in their efforts to provide low latency for the small tasks, these
systems waste significant CPU resources. Figure 1 shows the
total throughput achieved by each system, normalized by the
maximum throughput the application can achieve when run-
ning alone on the configured set of cores (16 for Arachne and
32 for Caladan). Thus at the lowest and highest loads (where
only one of the applications is running1), both systems are

1Arachne dedicates one core to each application, so its background
throughput never reaches zero.
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at their highest possible efficiency, achieving a total normal-
ized throughput of 1.0. Ideally, the total throughput of both
applications would remain at 1.0 as the small task load varies.
However, at moderate loads, both systems suffer significant
efficiency losses, wasting up to 64% or 36% of their cores,
with Arachne and Caladan, respectively. This inefficiency is
not exclusively bad; the excess cycles can be used to handle
small tasks sooner, lowering latency.

From these results, it is clear that these systems are able to
multiplex cores between applications, but they are extremely
inefficient while doing so. When handling longer tasks (e.g.,
10 µs or 100 µs), these systems become much more efficient.
This begs the question: what is responsible for these effi-
ciency losses with short tasks? These systems differ along
many different dimensions: their core-allocation policies, their
load-balancing policies, their threading libraries, and whether
they use the Linux network stack (Arachne) or kernel-bypass
(Caladan). The latter implementation aspects can contribute
significantly, but they have been studied extensively by prior
work. We focus instead on the policy aspects and seek to
understand which load-balancing and core-allocation policies
yield the best performance for small tasks.

3 Design Space of Policies
If reallocating cores across applications and load balancing
tasks between cores incurred no overhead (i.e., they could
be done instantaneously), the optimal policies would be: (1)
immediately grant an application a new core whenever a task
arrives and yield the core when the task completes and (2)
steer each newly arrived task to its newly granted core. With
these policies, CPU usage would exactly match the time spent
on tasks (100% efficient) and if an additional core was always
available then tasks would never queue (zero added latency).

These idealized policies are sufficient with long task service
times (e.g., 100 µs or more), because the overheads of load
balancing and core reallocation are relatively small (§4.3).
However, with tasks as short as a single microsecond, load-
balancing and core-allocation overheads become significant
and we can no longer afford to perform both a core-allocation
and a load-balancing action for every task that arrives; doing
so wastes considerable CPU resources. For good performance
with short tasks we must consider other policies. The key
difference between distinct policies is when they choose to
incur overheads (e.g., when a task arrives vs. when a queue
builds up), and these choices determine their latency and CPU
efficiency. Thus finding the best load-balancing and core-
allocation policies amounts to asking the question: given that
load balancing and core allocation incur overheads, how
should we spend those overheads most effectively?

3.1 Setting and Assumptions

While exploring different policies, we make several assump-
tions about our setting (illustrated in Figure 2). We assume
that each server runs one or more applications, where each ap-

Figure 2: Applications use load balancing to balance tasks across
cores and core allocations to adjust the number of cores available to
each application.

plication is either a batch application that seeks high through-
put and is latency-insensitive or a latency-sensitive application
that handles short tasks. Each application is always allocated
a specific number of cores; when an application yields a core,
the core will be granted to another application if possible.

Tasks can either arrive from external sources (e.g., a packet
arrives over the network or a storage operation completes)
or be created by the local CPU (e.g., a thread spawns a new
thread). We focus on settings with commodity NICs that spray
packets randomly over available cores (e.g., with RSS [3]),
though we also discuss how performance could change with
recent proposals for new NIC hardware with advanced steer-
ing capabilities (§4.2.1). Unless specified otherwise, we as-
sume that each core maintains its own queue(s) of tasks and
that tasks are not intentionally re-ordered (cores handle them
in FIFO order). We assume no preemption of running tasks
and no a priori knowledge of how long each task will take to
run.

3.2 Policies

In this section, we summarize the main policies used for load
balancing and core allocation today and describe when each
incurs overheads; these are the policies we evaluate in our
factor analysis (§4). The list is not exhaustive but rather an
attempt to cover the main classes of existing policies as well
as the theoretically optimal policies.

3.2.1 Load-Balancing Policies

Load-balancing policies can perform load balancing either
when a task arrives or once it has already been queued. The
latter category can be further divided based on what triggers
load balancing (either a lack of tasks for a core or a core with
too many tasks). We begin by describing a theoretical opti-
mum, and then describe four practical policies that fall into
these categories. Note that these policies are not necessarily
mutually exclusive.

Single queue. With no overheads, the theoretically ideal load-
balancing policy places all tasks in a single shared queue.
However, this approach limits throughput in practice due
to contention for the single queue. Shinjku [36] and RAM-
Cloud [62] take this approach; Shinjuku can support only

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation    3



Core-allocation Policy
System Load-balancing Policy Trigger for Adding a Core Trigger for

Revoking a Core

IX [12] none packet queueing delay low CPU utilization
Arachne [67] choice on enqueue with power-of-two choices [55] number of runnable threads low CPU utilization
Shenango [60], Caladan [26] work stealing max queueing delay of threads or packets failure to work-steal
Fred [40] steering on arrival or work-stealing once all cores are allocated task arrives task completes
Go [76] work stealing task arrives and no cores work stealing failure to work-steal

Table 1: Load-balancing and core-allocation policies used by existing systems. Core-allocation policies are highlighted to indicate whether
they rely on queueing , utilization , task arrival , or failure to find work .

about 5 million requests per second with a single queue.

No load balancing. Without load balancing, tasks are handled
by the core they first arrive at, such as the core that spawns a
thread or the core a packet or storage completion is steered
to by hardware [12, 42, 64]. This approach incurs no load-
balancing overheads.

Enqueue choice. Enqueue choice policies make a load-
balancing decision about which core to assign a task to when
the task is first created; tasks cannot be moved later. Exist-
ing systems commonly use “power of two choices” [55] to
enqueue a task to the less-loaded of two randomly sampled
cores [33, 67, 81]. When a task is first created, the creating
core incurs overhead to sample queues on other cores (which
can be done in parallel for small numbers of sampled cores)
and to enqueue the task to the chosen core.2

Work stealing. When a core is idle, it searches for a core that
has queued work, and then steals half the tasks from that core
and moves them to its own queue [14]. This approach is used
by the Go runtime [76], several multithreading platforms [9,
16, 17, 45, 47, 59, 68], and many research systems [26, 40, 44,
50, 60, 66, 81]. It incurs overhead to check other cores for
queued work and move work to its local queue.

Work shedding. With work shedding, overloaded cores can
shed load to other cores or request that other cores take some
of their load. This has been considered by several theoretical
papers [22,73,77] and for load-balancing systems in a variety
of contexts [56, 78]. We consider a work-shedding policy
in which a core that has had tasks queued for longer than a
specified threshold selects a random core and indicates that
it is overloaded. That core will then respond by stealing half
of the overloaded core’s tasks; this is the primary source of
overhead for this policy.

3.2.2 Core-Allocation Policies

All core-allocation policies incur overhead in the same way:
by adding or revoking a core. Their overheads are primarily
determined by how often they reallocate cores and consist of
both the latency until a core is available after a reallocation
decision is made and the CPU cycles that cannot be used pro-
ductively while a core is being reallocated. The performance
of each policy is determined by how effective the signals are
that it uses to trigger core reallocations. Most policies make

2Note that “no load balancing” is a special case of enqueue choice in
which there is only one choice and no overhead.

core-allocation decisions at fixed time intervals (e.g., every
5 µs [60]), though some are triggered by other conditions.

We cannot easily model or compute an optimal core-
allocation policy, i.e., one that achieves the optimal tail latency
for a given CPU efficiency or vice versa. This is because find-
ing the optimal tail latency for a given CPU usage bound
or vice versa is NP-hard assuming a finite number of cores
and non-constant service times; this can be shown by a re-
duction from the multiprocessor scheduling problem (see
Appendix A.1). We now list the core-allocation policies we
consider.

Static. With static core allocations, the number of cores al-
located to each application cannot change over time, as in
several research systems [42, 64, 66]. This incurs no overhead
for core reallocations. However, each application must be pro-
visioned with enough cores for peak load, wasting significant
CPU resources as load varies over time, which is typical of
datacenter workloads [11, 35].

Per-task. Systems such as Fred [40] with per-task core allo-
cations grant a core to an application every time a task arrives.
This incurs the overhead of a core allocation for each task,
except when all cores are in use.3

Queueing-based. Policies based on queueing delay grant an
application an additional core if the queueing—as measured
by either the number or delay of threads, packets, or storage
completions—exceeds a certain threshold. These policies
vary in whether they trigger based on the maximum queueing
across cores [26, 60] or use an average [12, 67].

CPU utilization-based. Utilization-based policies add or re-
voke cores based on the number of idle cores [35] or the
average fraction of time cores spend working on tasks (as
opposed to sitting idle or busy-spinning) [12, 67].

Failure to find work. In some systems, an application will
yield a core when the core is unable to find any tasks to work
on. This can happen when a core fails to find another core
with queued work to steal from [26,60,76] or when it finishes
its current task, with a per-task core-allocation policy [40].

3.3 Overheads

Both load balancing and core allocation entail overheads; in
this section we discuss the magnitude of these overheads in
typical systems today.

3Once all cores are allocated to an application, Fred places additional
arriving tasks in per-core queues and cores use work stealing to find them.
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Load-balancing overheads. Load-balancing overheads can
be impacted by several factors: the CPU architecture (how
long does it take to handle a cache miss? how many cache
misses can be outstanding simultaneously?), the workload
(how often is load-balancing state cached locally vs. modified
on remote cores?), and speculative execution (how success-
fully can the CPU overlap cache misses with other instruc-
tions via speculative execution?). Despite these factors, we
attempt to estimate the overheads of different load-balancing
policies and in Section §4.2.1 we demonstrate that our con-
clusions about the relative performance of different policies
are unlikely to change with different overheads.

Because load balancing requires communication between
cores, its overhead arises primarily from cache misses while
retrieving cache lines from the L2 cache of another core.
Depending on the CPU microarchitecture, one such cache
miss can cost between 30 ns (Intel Haswell) and 200 ns (Xeon
Phi) [72]. A load-balancing operation moves state from one
core to another; this typically entails about three cache misses
to read a remote cache line, invalidate it so that it can be
written in the local cache, and then a third cache miss when the
remote core reads the modified cache line [67]. The overhead
incurred by the core performing the load balancing will then
be about two cache misses, or 60-400 ns.4 For comparison,
we measured that Caladan [26] takes about 120 ns on average
to check via work stealing if another core has stealable work
(in the form of queued packets, threads, or timers).

Note that a single core can typically have up to about 10
cache misses outstanding at once [24] (we confirmed through
a microbenchmark [48] that this seems to be about 10-12 for
our Intel Skylake servers). This enables small numbers of
independent cache misses (such as those to sample the load
on two different cores) to incur in parallel.

Core-allocation overheads. The latency for a core alloca-
tion to complete varies depending on the mechanism used to
reallocate the core. At a bare minimum, reallocating a core
requires an inter-processor interrupt (IPI) from the core that
makes the reallocation decision to the core that will be reallo-
cated to a different application; this takes about 1993 cycles
or roughly 1 µs [36]. Existing systems report slightly higher
core-allocation latencies, varying from 2.2 µs to reallocate an
idle core or 7.4 µs to reallocate a busy core in Shenango [61]
to 29 µs to reallocate a core in Arachne [67].

4 Factor Analysis
In this section, we perform a factor analysis to determine the
relative performance of the load-balancing and core-allocation
policies defined in §3.2. We cannot effectively compare dif-
ferent policies by comparing existing systems that implement
them (e.g., Caladan vs. Arachne), because these systems differ
in many aspects besides their policies (threading libraries, net-

4This is an approximation; the exact overhead will depend on application
behavior.

work stacks, etc.). Even comparing different policies within a
single implemented system can be challenging, because the
optimal system design may vary depending on the policy. For
example, systems may use different locking mechanisms to
protect thread queues depending on whether only the local
core can enqueue to them (as in work stealing) or if remote
cores can also enqueue to them (as in enqueue choice). Thus,
to decouple the behavior of the policies from the behavior of
the systems that they are implemented in, we use simulations.

Our simulations rely on several parameters which define
both the workload and assumptions about the possible un-
derlying system. We find that our conclusions are quite ro-
bust to variations in these parameters, and therefore may
be applicable to a wide variety of implementations and
workloads. We have made the source code for our sim-
ulations available at https://github.com/smcclure20/
scheduling-policies-sim.

4.1 Simulation Methodology

While our focus is on policy choices rather than implementa-
tion details, we do seek to model realistic overheads for cross-
core communication and for allocating cores to applications.
In order to fairly compare different policies, we use consistent
values for each overhead, based on the overheads measured
above (§3.3). We model the cross-core communication gener-
ally required for load balancing as taking 100 ns. We model
the core-allocation overheads (both latency to allocate a core
and wasted CPU cycles) as 5 µs per core allocation. In §4.2.1,
we will consider some different values for load-balancing
overheads, though varying them by even 100% does not have
a profound impact on our results. We discuss the implications
of varying core-allocation overheads in §4.3.

Our overall model assumes that each core has a single local
queue (i.e., no distinction between packet and thread queues)
and that tasks arrive randomly at the queues of allocated
cores. This is representative of a NIC randomly steering tasks
to cores or of running threads randomly spawning an addi-
tional thread. Our simulator models each of the general policy
approaches outlined in §3.2, with specific implementation
choices made based on real system implementations when-
ever possible. We acknowledge that our model is a simplified
view of these systems, but we found that the general trends of
latency and efficiency are consistent between simulations and
experiments, for the systems we evaluated (§6). Our simulator
does not support preemption but could be extended to model
systems which do [20, 36, 82]. We now describe the specific
load-balancing and core-allocation policies that we simulate.

Load-balancing policies. We model no overheads for the
idealized single-queue policy or for the no load balancing
policy. For enqueue choice, when a task arrives, the core at
which it arrives incurs the 100 ns overhead to move the task to
its destination queue (the shortest queue from two randomly
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sampled options).5 When work stealing is enabled and a core
does not have any work in its local queue, it begins iterating
through the other cores, checking if there is available work to
steal. Each check of a remote queue incurs the 100 ns over-
head, as does the act of stealing any found tasks. With work
shedding, each core checks if its queue’s current queueing
delay is higher than the configured threshold after each task
it finishes. If so, it selects a random core to notify or “flag.”
The remote core will check for flags between each of its tasks,
respond (if a flag is present) by stealing tasks from the over-
loaded queue so that the two queue lengths are balanced, and
incur the 100 ns overhead.

Core-allocation policies. Our per-task policy (based on
Fred [40]) immediately grants a new core to an application
if one is available in the system whenever a new task arrives.
The core at which the task is initially randomly placed pays
a 100 ns overhead to place the task at the new core. When a
core finishes a task, it checks if there are more queued tasks
in the system than available cores and yields if there are not.

The remaining core-allocation policies make decisions
at fixed time intervals. To model Shenango [60] and Cal-
adan [26], at the end of every core-allocation interval, the
simulation determines the maximum queueing delay across
cores within an application. If it exceeds a specified thresh-
old (typically the length of the interval itself), the simulation
grants an additional core to that application. An application
yields a core if the core attempts to work steal from every
other core in the application and fails to find any tasks to steal.
Shenango and Caladan have very similar policies; the main
distinguishing factor in our model is the difference in their
interval/threshold values (Table 2).

We also design and simulate two new core-allocation poli-
cies. First, we design a queueing-based policy called delay
range which attempts to maintain a specified average queue-
ing delay across all cores within an application. Every core-
allocation interval (every 5 µs), the simulation checks the
average queueing delay. If it is below the specified lower
bound, a core is revoked; if it is above the upper bound, a core
is added. Similarly, with our utilization range policy, a core
is added or removed whenever the average CPU utilization
over the past interval (fraction of time spent handling tasks)
falls outside the specified range.

There are three notable aspects of core-allocation systems
that we do not model. First, some systems dedicate a sched-
uler core to making core-allocation decisions and initiating
core allocations [26, 60, 67] while others have application
cores perform these tasks in a distributed way [40, 76]. We
do not model these distinctions and assume that all work for
initiating core reallocations could be offloaded to a separate
dedicated core. Second, we do not model the overheads in-
curred by applications measuring and exposing statistics to
the dedicated core; in practice these overheads are small and

5We assume the options may be checked in parallel as explained in §3.3.

Parameter Default Value
Work shedding delay threshold 2 µs
Enqueue choices 2
Utilization range 75-95%
Delay range 0.5-1 µs
Shenango max queueing threshold 5 µs
Caladan max queueing threshold 10 µs

Table 2: Canonical configuration parameters.

simply require application cores to write a small amount of
state (e.g., timestamp when a task was queued) to shared
memory. Third, we do not model the caching implications of
reassigning a core from one application to another.

Configuration. Each policy has its own unique parameters.
Unless stated otherwise, we use the default parameter values
shown in Table 2. We chose these specific values based on
the best overall performance seen for each policy, though we
will discuss the implications of configurability throughout
this section.

In all of our simulations, we use a canonical configuration
of 32 cores, exponentially-distributed service times with an
average of 1 µs, Poisson arrivals, and an offered load that
occupies 50% of the cores on average. Experiments below
will vary many of these dimensions independently, but we
will use this configuration by default. To contextualize the
policy overheads described above, with the average task time
set at 1 µs, the overhead for load balancing is 10% of average
task time while the overhead of core reallocation is 500%.

4.2 Load Balancing

To understand how load-balancing policies impact perfor-
mance, we first evaluate different load-balancing policies in a
setting where cores are statically allocated (cores are never
reallocated) (§4.2.1), and then evaluate whether core realloca-
tions impact these findings (§4.2.2).

4.2.1 With Static Core Allocations

Individual policies. We first evaluate each load-balancing
policy independent of any particular core-allocation policy
by running each experiment with a fixed number of cores.
This allows us to determine the relative performance of each
approach when given the same number of total CPU cycles,
since a given allocation policy will make different allocation
decisions depending on the behavior of the specific load-
balancing scheme, even under the same traffic. By decoupling
the two, we can determine which end-to-end effects are due
specifically to load-balancing policies.

Figure 3 shows the tail and median latencies (y-axis) of
different load-balancing policies as we vary the number of
statically-allocated cores (shown on the x-axis as a fraction
of the total possible), while offering an average load of 50%.
Each curve corresponds to a load-balancing policy with 100 ns
overheads, while the shaded regions vary this from 0 ns to
200 ns. In general, approaches that operate lower and to the
left in this graph are preferable. We will discuss the JBSQ
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(a) 99.9% latency. (b) Median latency.

Figure 3: Performance of each load-balancing policy with different numbers of statically
allocated cores. Shaded regions cover overheads 0-20% of average task time. The line in
each region shows the canonical case of 10% load-balancing overheads (100 ns).

Figure 4: Latency curves for combinations of
work stealing with other load-balancing policies,
with static core allocations.

curve later.

Finding 1: With static core allocations, work stealing
achieves better latency (at the median and tail) for a given
efficiency (number of allocated cores) than work shedding or
enqueue choice.

While all load-balancing policies yield significant improve-
ments over no load balancing, work stealing consistently has
significantly lower median and tail latency for the same num-
ber of statically-allocated cores than the other approaches;
work stealing Pareto-dominates enqueue choice and work
shedding. The relative performance between enqueue choice
and work shedding is less consistent and varies depending on
system and workload parameters such as the number of allo-
cated cores, latency percentile, and service time distribution
(Appendix A.2.2).

The enqueue choice curve is consistent with the well-
known “power-of-two choices” result [55], showing that two
choices of queues is much better than one (the “No Load
Balancing” curve). This is particularly true when there is no
overhead (as modeled in [55]) which is demonstrated by the
lower bound of enqueue choice’s shaded region in Figure 3.
Despite this, enqueue choice still performs worse than work
stealing. Further measurements revealed that this is due to
three main limitations: (1) per-task load-balancing overheads
that cap the possible throughput and add latency to all tasks,
(2) a limited number of queue choices, and (3) placement
based on number of queued tasks rather than the sum of ser-
vice times of queued tasks. Overall, (2) and (3) can result
in periods of load imbalance in which tasks are queued and
cores are idle, but there is no way for the idle cores to assist
with those “stranded” tasks. Choosing by the sum of the ser-
vice times in the queue [30, 31] or increasing the number of
choices can improve tail latency, though these are not always
practical, and reducing the overheads to 0 provided a bigger
performance benefit than either of those changes individually.

The tail latency gap between work stealing and work shed-

ding can be explained by the steps necessary to move a task
that ends up contributing to tail latency to the core that ul-
timately handles it. With work shedding, for a task at an
overloaded core, time is spent waiting to cross the signalling
threshold, waiting for the core to complete its current task
and raise a flag, and waiting for the remote core to respond.
In work stealing, tasks simply wait until a work-stealing core
checks their queue; the latency of this depends primarily on
the number of excess cores. With a work-shedding queueing
threshold of 2 µs we found that on average tasks that were
shed spent 3.1-4.5 µs queued on cores other than the one
that ultimately handled the task, compared to 0.3-1.4 µs with
work stealing. Most tasks at the tail are stolen at least once,
explaining the corresponding gap between the two in tail la-
tency. Lowering the queueing threshold only yields marginal
improvements, because at higher loads most cores will always
have a flag pending. In addition, without preemption, tasks
still incur delays from the other two steps described above.

We now investigate the robustness of these results to
changes in overheads in case our overhead estimates are not
representative of certain underlying hardware or better tech-
nology arises in the future. Note that this does not apply to
single queue simulations or those with no load balancing as
they have no overheads. By looking at the upper or lower
bounds of the shaded regions in Figure 3, we see that for the
same overhead, work stealing consistently outperforms the
other approaches. Even if inter-core communication was free
for enqueue choice and work shedding, work stealing with
200 ns overheads outperforms for most numbers of allocated
cores. Further, work stealing consistently achieves the best
performance even if we model the load-balancing overhead
as 400 ns, the upper bound of our estimate from §3.3.

Work stealing’s superior performance is robust across dif-
ferent latency percentiles (median to 99.9%) (Figure 3), av-
erage service times (e.g., 1, 10, 100 µs) (Figure 5), num-
bers of cores (Figure 6), loads (Appendiex A.2.1), and ser-
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vice time distributions (exponential, constant, bimodal) (Ap-
pendix A.2.2). For all service time distributions evaluated, the
ordering of the static curves remained the same as in expo-
nential distributions shown. Though, when service times are
constant, the specific choice of load-balancing policy has less
overall impact on system performance.

Combining policies. Notably, these load-balancing ap-
proaches are not mutually exclusive. Since each policy takes
effect at a different time in the handling of a task, work steal-
ing can take advantage of extra cycles while work shedding
addresses excessively loaded cores or enqueue choice proac-
tively tries to balance queues. Accordingly, we simulated
work stealing combined with each other approach with static
core allocations.

Finding 2: With static core allocations, adding shedding on
top of work stealing provides some latency benefit (primarily
at the tail) while adding enqueue choice to work stealing
makes performance unchanged or worse.

This is demonstrated in Figure 4. We see that adding en-
queue choice to a system that already employs work stealing
does not improve performance. There are two reasons for this,
depending on what efficiency (x-axis) we are operating at:
(1) with few cores available, enqueue choice adds significant
overhead per-task which degrades throughput, and (2) with
many cores available, there is little room for improvement
between work stealing and single queue. When adding work
shedding to work stealing, however, there are some benefits
since the shedding mechanism can help balance out queues
under high-load conditions when work stealing lacks the extra
cycles to help, though the benefit is fairly limited to certain ef-
ficiencies as the overheads of flagging can become excessive
when spare cycles are rare.

Leveraging hardware. Given these results, we ask two ques-
tions motivated by recent advances in hardware: (1) what if
the NIC can perform more intelligent distribution than simple
hashing? and (2) what impact would handling many cache
misses in parallel have? (1) is motivated by recently proposed
systems such as the NanoPU [34] which selects queues for
incoming packets according to join bounded shortest queue
(JBSQ) [43].6 JBSQ is known to achieve good performance
with tail latency improvements up to 10 µs over work steal-
ing, as shown in Figure 3. However, this boost requires new
hardware to direct incoming traffic intelligently.

To address (2), we simulated scenarios where the underly-
ing hardware could resolve several cache misses at once (as
described in §3.3). Ultimately, this capability means that load-
balancing policies may communicate with multiple cores for
the price of one (e.g., check 10 cores for the presence of work
in work stealing). However, we found that these modifica-

6JBSQ(n) queues up to n outstanding tasks at each core (including the task
currently being handled) and maintains any surplus in a central queue [43].
We evaluate the case of 3 outstanding tasks, as in NanoPU, though we label
this as JBSQ(3) in the terminology of [43] rather than JBSQ(2) as in NanoPU.

tions provided marginal benefits at best, even assuming that
processing the results of parallel checks incurs no overhead.

In general, work stealing was consistently the best perform-
ing load-balancing policy when given the same number of
cycles as other approaches even as overheads and workload
parameters vary. Broadly, work stealing achieves high per-
formance by avoiding per-task overheads and leveraging idle
cores to avoid stranding tasks at overloaded cores. Ultimately,
absent new hardware, work stealing is the best option for
load-balancing approaches among those we evaluated. While
work stealing’s superiority may seem unsurprising given its
widespread use, we believe that we are the first to compare it
against other policies and demonstrate its benefits when han-
dling microsecond-scale tasks with realistic load-balancing
overheads.

4.2.2 With Dynamic Core Allocations

Next, we consider how load-balancing policies perform when
cores can also be reallocated: does reallocating cores change
the findings above? When the number of cores allocated to
a given application varies over time, it becomes harder to
compare approaches (combinations of load-balancing and
core-allocation policies). Each combination represents a sin-
gle point in the tradeoff space between latency and efficiency.
If one combination has better latency but worse efficiency than
another (i.e., neither is Pareto dominant), which is preferable?
Some core-allocation policies are configurable and could be
tuned to operate at the same efficiency to compare their laten-
cies. However, not all approaches are tunable (e.g., per-task
allocations), so this methodology cannot be used to compare
all policies. Thus it is not always possible to say that one
policy combination is definitively better than another.

We attempt to pair each load-balancing policy with each
other core-allocation policy, but some pairings require modi-
fications or are not reasonable. In Shenango/Caladan, cores
park upon failing to find any work to steal. We modify this
to work with other load-balancing policies by revoking cores
after they spin for the time it would take to check all cores in
traditional work stealing, assuming no additional work arrives
in the meantime. Per-task allocations maintain the invariant
that the number of active cores is equal to the minimum of the
number of tasks present and the total number of cores. This
is only reasonable with a work-conserving load-balancing
policy, so we only evaluate per-task core allocations with the
work-stealing load-balancing policy.

With this in mind, we simulated all coherent combinations
of load-balancing and core-allocation policies to compare
how they explore the available tradeoff space. The results
across different average task durations are shown in Figure 5.
Finding 3: When cores are dynamically reallocated, work
stealing performs better than shedding or enqueue choice.
This is robust against all factors mentioned in Finding 1.

Figure 5a shows each combination of load-balancing and
core-allocation policies with static-allocation curves for ref-
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(a) 1 µs average task service time. (b) 10 µs average task service time. (c) 100 µs average task service time.

Figure 5: Combinations of each core-allocation policy with a load-balancing policy at 50% load with static-allocation curves for each
load-balancing policy for reference. Each policy uses the canonical configurations from §4.1. Points for each combination of policies are the
color of their load-balancing curve and have the shape type (squares, circles, stars, or triangles) of their core-allocation scheme.

Figure 6: Core-allocation and load-balancing policy combinations
for 64 cores and 1 µs tasks. Refer to the legend in Figure 5.

erence. Comparing each core-allocation policy (shape type)
across load-balancing policies (colors), we see that work steal-
ing always performs best in terms of proximity to the single
queue curve. Note that this graph only shows one choice of
parameters for each core-allocation policy, but some can be
configured to make different latency vs. efficiency tradeoffs.
We generally chose the configuration closest to the bottom-left
of the graph, though we will discuss configurability broadly
in §4.3.

While adding dynamic core allocations makes the indi-
vidual performance of each load-balancing policy less clear,
overall work stealing still consistently performs better than
other load-balancing approaches (absent new hardware).

4.3 Core Allocation

In this section, we compare the performance of different
core-allocation policies. Since core-allocation policies are
designed to react to changes in load, their performance tends
to be tightly coupled with the load-balancing policy employed.

Better load-balancing policies will more effectively use the
available cycles, allowing the core-allocation policy to be
more conservative in granting cores. Therefore, we evaluate
each core-allocation policy across each load-balancing policy
and seek to find patterns in the tradeoffs between efficiency
and latency that each core-allocation policy makes.

We note that some existing systems use an additional ded-
icated core (such as Shenango’s IOKernel) to perform core
allocations [26,60,67]. We do not count these cores as we are
focusing on policy rather than the implementation of that pol-
icy. If we were to include these cores, all efficiency results for
these policies would incur an additional 3% CPU utilization
for a 32-core system.

We began by asking the question: does reallocating cores
yield better performance than sticking with a constant number
of cores? One might expect that even with constant average
load, being able to react to bursts in load over small time scales
would yield significant performance benefits. Surprisingly, we
found that the answer to this question is often ‘no’.

Finding 4: For short tasks, none of the core-allocation poli-
cies we tried achieved better latency (median or tail) for a
given average efficiency than static core allocations (with the
same load-balancing policy). However, this becomes possible
with longer tasks.

In Figure 5a, none of the core-allocation policies achieve
better tail latency for the same efficiency as a static allocation
(the points fall up and to the right of their corresponding static
core-allocation curves). As shown in Figures 5b and 5c, when
the average task service time is longer (e.g., 10 µs or 100 µs),
some policy combinations (points) can achieve better perfor-
mance than their static-allocation curves. With work stealing
and 10 µs service times, delay range, utilization range, and
Caladan all beat the static curve for 99.9% tail latency, but
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not for the median (omitted for space). This is true for 100 µs
service times as well, with per-task also beating the work-
stealing curve. As the average task duration increases, the
relative importance of the core-allocation overhead decreases
and allocating new cores for additional tasks becomes reason-
ably efficient. The only policy combinations which beat their
respective curve include work stealing as the load-balancing
policy. Work stealing leverages extra cycles to distribute load
while enqueue choice and work shedding are limited in im-
pact since newly added cores will spin idly, unable to handle
tasks until a new task arrives or they are flagged by another
core.

The only method we have found that can outperform the
static curve with tasks as small as 1 µs requires the core-
allocation system to be extremely reactive, making core-
allocation decisions more frequently than 5 µs and giving
the new cores to the application faster than in 5 µs. More
frequent allocations are challenging in a real-world imple-
mentation because of the overheads of checking state and
initiating core reallocations. For example, in Shenango, these
actions take roughly 2.1 µs or 3.4 µs with 32 or 64 application
cores, respectively [61]. Completing each core reallocation in
less than a few microseconds is similarly challenging (§3.3).

Even though core allocations may not provide performance
benefits with short tasks, one may employ a core-allocation
policy to ensure that the application can adapt to changes in
load. Average load in datacenters tends to vary over time [11],
so allocating a static number of cores for a constant load would
require provisioning for the peak load, wasting CPU cycles
over time as load varies. Reacting more slowly to changes in
load is also unlikely to perform well; prior work has shown
that reactions at 50 ms timescales can cause significant tail
latency spikes [60].

Assuming that achieving better performance than the static-
allocation curves is unlikely for small tasks, we evaluate the
different core-allocation policies in terms of the consistency
of their performance and their ability to achieve high CPU
efficiency. For some core-allocation policies, the placement
relative to a static curve can vary significantly depending on
the workload and load, making it difficult for an operator to
configure the policy to achieve their goals (e.g., a specific tail
latency or CPU efficiency target). By comparing the tradeoffs
core-allocation policies make across workloads and loads, we
find the policies that exhibit consistent performance.

Finding 5: Policies that explicitly optimize for an end-to-end
user-visible metric (e.g., delay range and utilization range)
have more consistent performance, as measured by those
metrics, across different configurations.

For example, Figure 5 illustrates that for Caladan and per-
task, the operating point changes with different service times.
In contrast, utilization range and delay range specify a range
on the x and y axes of the graphs, respectively, that the system
should not leave. This generally forces the points to specific

(a) Efficiency measured in excess cores.

(b) 99.9% latency.

Figure 7: Performance of core-allocation policies paired with work
stealing across loads for 64 cores. Efficiency is measured in the
excess cores used compared to the single queue simulation.

regions of their static-allocation curves (when the curves can-
not be crossed). For example, utilization range points achieve
close to 60% CPU utilization across all service times in Fig-
ure 5.

Delay range and utilization range also have more predi-
catable performance across different loads. In Figure 7, we
illustrate how performance of different core-allocation poli-
cies varies with load (when paired with work stealing). We use
64 cores instead of 32 in order to sweep a wider range of loads.
Figure 7a shows the efficiency measured as excess cores in
comparison to the single queue ideal simulation (i.e., total
number of cores used by a given policy minus those used in
the ideal case) while Figure 7b shows the tail latency. Caladan,
Shenango, and per-task have inconsistent efficiency and tail
latency across loads, while delay range and utilization range
each keep their respective end-to-end metric relatively con-
stant. Overall, we found that policies such as delay range and
utilization range have consistent performance across work-
loads and configurations, enabling the operator to directly
tune the policy’s parameters to achieve a specific end-to-end
performance objective.

Next, we consider whether each core-allocation policy can
be configured to operate near the bend of each static-allocation
curve, achieving high CPU efficiency while only minimally
compromising in tail latency.

Finding 6: Yielding cores only when no work is found (when
there is no queued work or work stealing fails) makes it chal-
lenging to achieve good efficiency with small tasks, especially
with many cores.

The policies that yield cores only when no work is found
(Caladan, Shenango, and per-task) cannot always achieve
good CPU efficiency, especially with many cores. Here we
focus on analyzing each core-allocation policy when paired
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with work-stealing, as it performs best. Figure 5a illustrates
that per-task achieves poor CPU efficiency with 32 cores,
while Figure 6 shows that per-task and Caladan both achieve
poor CPU efficiency with 64 cores, using more than 80% of
CPU cores for a workload that only requires 50% of cores. In
contrast, delay range and utilization range both operate near
the bend of the static-allocation curves for 32 and 64 cores.
Figure 7 illustrates that utilization range and delay range can
save up to 15 cores for similar tail latency across loads.

The efficiency of the Shenango, Caladan, and per-task poli-
cies is limited because these policies are slow to yield excess
cores. With per-task core allocations, before all cores are al-
located the efficiency cannot reach higher than T/(T +R)
where T is the average task time and R is the core-allocation
overhead, because a core is allocated for every task. Simi-
larly, in policies that yield cores only when work stealing fails
(Shenango and Caladan), a significant amount of cycles can
be wasted searching through all other cores to never find work
or only to find it late in the search. As the number of cores
increases, this effect gets worse. Neither Shenango/Caladan
nor per-task can be configured to avoid these inefficiencies.
Therefore, to achieve high efficiency across workloads and
configurations, a core-allocation policy must revoke cores
proactively, even when there is or may be some queued work.

We did assess other core-allocation policies such as main-
taining a buffer of idle (or work-stealing) cores of a certain
size (similar to PerfISO [35]) and enforcing this buffer at
every allocation interval. However, this approach tended to be
too noisy with short core-allocation intervals and performed
significantly worse than other policies.

All together, we found that it is difficult to outperform static
core allocations with small tasks, and if the average load is
constant and known a priori, then statically allocating cores is
the best option. However, when load is unknown or changes
over time, dynamic allocation policies that proactively revoke
cores perform best.

4.4 Policy Takeaways

Overall, our factor analysis found that without new hardware,
the best approach is to use work stealing as the load-balancing
policy with delay range or utilization range for core alloca-
tions, depending on which end-to-end metric is more impor-
tant to specify and stabilize. Both of these policies are able
to operate close to the work-stealing static curve with short
tasks or better than the curve with long tasks. Both are ro-
bust in the face of service time variability, different service
time distributions, load changes, and changes in number of
cores. Lastly, both are configurable, allowing the operator to
choose whether they prefer CPU efficiency or tail latency (and
to what extent). These approaches are intuitive; since core-
allocation policies make a tradeoff between CPU efficiency
and tail latency, using either parameter effectively as a signal
for reallocating cores and controlling where to operate in the
space of tradeoffs makes sense.

5 Implementation
We implement our policies in a real system by extending Cal-
adan [75]; our source code is available at https://github.
com/shenango/caladan-policies. Like its predecessor
Shenango [60], Caladan’s key components are its application
runtime and its dedicated scheduler core, which implements
the core-allocation policy. Caladan provides lightweight user-
level threading, a high-performance network stack, and load
balancing via work stealing. It also enables higher network
throughput and its core-allocation mechanisms are more scal-
able compared to those of Shenango.

We implement both delay range and utilization range atop
Caladan. This requires small modifications to both the runtime
(50 LOC) and to the scheduler (125 LOC). The Caladan
runtime already exposes information about the queueing delay
of threads and packets to the scheduler core; we augment this
with information about CPU utilization (time spent executing
the application vs. in the runtime scheduler) as well. We also
add the ability for application cores to yield voluntarily when
notified by the scheduler core to do so. When application
cores enter the runtime scheduler between tasks, they check
if they should yield; for efficiency we do not preempt cores
while they are handling tasks. In the scheduler core, we simply
add logic for polling the utilization information exposed by
applications, and use this or the delay information (depending
on the current policy) to decide whether to add or revoke cores.
When a core revocation is necessary, the scheduler revokes
the core that currently has the least amount of queued work.

Measuring the CPU utilization of application cores over
fine timescales is more challenging in practice than in simu-
lation. This is because we do not interrupt running tasks to
record CPU usage and only record how CPU time is spent
whenever a task starts or finishes. Thus if a task runs for the
entirety of a 5 µs core-allocation interval, the scheduler core
will observe 0 cycles spent in both the application and the
runtime scheduler for that core. The scheduler core handles
this by assuming that when application cores report no CPU
usage for a core-allocation interval, their utilization is 100%,
and it adds a core. In the case when an application has zero
allocated CPU cores, CPU utilization is not a useful metric for
deciding if an application needs more cores. Thus regardless
of the core-allocation policy, the scheduler core always uses
the arrival of packets to decide when to grant an application
its first core, as in Shenango and Caladan.

6 Evaluation
The goal of our evaluation is to verify that the high-performing
policies we identified above can actually yield performance
improvements in practice for a real system. Unfortunately,
varying the load-balancing policy within a single system
would likely involve significant system changes, making a
fair comparison difficult (§4). Thus we focus on evaluating
the core-allocation policies. We start with a system (Caladan)

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation    11

https://github.com/shenango/caladan-policies
https://github.com/shenango/caladan-policies


0

50

100

150

0 5 10 15 20

Memcached Offered Load (million tasks/s)

9
9

%
 L

a
te

n
c
y
 (
μ

s
)

Caladan

Delay Range 0.5-1us

Delay Range 1-4us

Shenango

Util Range 0.75-0.95

(a) Tail latency for memcached.

0.00

0.25

0.50

0.75

1.00

0 5 10 15 20

Memcached Offered Load (million tasks/s)

N
o

rm
a

liz
e

d
 B

a
c
k
g

ro
u

n
d

 O
p

s
/s

Caladan

Delay Range 0.5-1us

Delay Range 1-4us

Shenango

Util Range 0.75-0.95

(b) Normalized throughput of the background application.

Figure 8: Performance of two applications under different core-
allocation policies, when implemented atop Caladan. The x-axis
varies the load of memcached.

that uses the best-performing load-balancing policy (work
stealing) and evaluate its performance with different core-
allocation policies. We evaluate four policies: Shenango [60],
Caladan [26], delay range, and utilization range.

Experimental setup. We conduct experiments using two
dual-socket servers with 28-core Intel Xeon Platinum 8176
CPUs operating at 2.1 GHz. Our server machine is equipped
with a 40 Gbits/s Mellanox Connect X-5 Bluefield NIC (we
do not use the SmartNIC features) and our client machine is
equipped with an Intel E810C 100 Gbits/s NIC.7 We enable
hyperthreads and disable TurboBoost and frequency scaling.
We use 32 hyperthreads on the second socket (to which our
NICs are attached). We use Ubuntu 20.04 with kernel version
5.4.0.

Applications. We evaluate the different policies using mem-
cached (v1.5.6) [49], a popular key-value store, as our latency-
sensitive application. We use loadgen, Caladan’s open-loop
load generator, to generate requests with Poisson arrivals over
UDP [75]. Our workload consists of a mixture of read and
write requests according to Facebook’s USR request distribu-
tion [8]; requests have service times of about 1 µs. We run the
swaptions workload from the PARSEC benchmark suite [13]
as a background application and allow it to use all CPU cycles
not used by memcached.

7We run Caladan in “queue steering mode” in which we reconfigure the
mappings between NIC queues and cores when core allocations change [61]
because our NICs do not support Caladan’s default “flow steering mode.”

6.1 Policy Comparisons

Our experimental results show that different policies yield
different latency vs. CPU efficiency tradeoffs, but that delay
range and utilization range generally outperform Shenango
and Caladan, confirming the findings of our simulation-based
factor analysis. Figure 8a shows the tail latency of mem-
cached while Figure 8b shows the throughput achieved by
the background application, both as we vary the load offered
to memcached (x-axis). We show results for two different
configurations of delay range to illustrate the impact of tuning
the target range.

In Figure 8, utilization range and delay range (0.5-1 µs)
achieve similar tail latency for memcached as Caladan and
Shenango, while achieving higher CPU efficiency for the
background application. In addition, all of these policies yield
similar median latency for memcached (not shown). Shenango
is least efficient overall, and these two new policies achieve
up to 22% more of the total possible throughput for the back-
ground application (7 hyperthreads worth) than Shenango.
Compared to Caladan, these policies achieve up to 13% more
throughput for the background application (4 hyperthreads
worth). This is because with Shenango and Caladan’s policies,
memcached spends much more time in the runtime scheduler,
primarily work stealing (up to 26% and 21% of its time, re-
spectively). In contrast, with the other policies, CPU time in
the scheduler is much lower. For example, with utilization
range, memcached spends less than 14% of its time in the
scheduler at all except the lowest loads. By proactively re-
voking unused cores rather than waiting for work stealing to
fail to find tasks to handle, delay range and utilization range
can achieve higher CPU efficiency without degrading the
performance for memcached.

Both the delay range and utilization range policies take as
input a target range, and these ranges can be adjusted to make
different tradeoffs between tail latency and CPU efficiency.
As an example, Figure 8 shows two different ranges for de-
lay range. Delay range 1-4 µs achieves about 2 hyperthreads
worth of additional throughput for the batch application com-
pared to delay range 0.5-1 µs, at the cost of 10-15 µs of tail
latency.

7 Related Work

Load-balancing policies. Load-balancing policies have been
studied extensively, both theoretically and in the context of
real systems. Several systems have adopted the ideal policy
of maintaining a single shared queue [36, 62], though they
experience throughput bottlenecks as a result. Others take the
opposite approach and perform no load balancing in software,
leaving it to the NIC [12, 64] or storage device [42] to ran-
domly distribute work across cores; these approaches suffer
from load imbalances.

Work stealing was originally proposed as a way of effi-
ciently scheduling multithreaded computations across multi-
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ple cores [14,39,71]. Variants of work stealing have been stud-
ied thoroughly [54, 57] and adopted in task-parallel platforms
such as OpenMP [59], IntelTBB [68], Cilk [47], Habanero [9,
16], X10 [17], Java Fork/Join [45], and the Go runtime [76].
More recently, work stealing has been adopted in datacenter
systems as a way to provide low tail latency [26,44,60,66,81].
Similarly, past work has analyzed the power-of-two choices
load-balancing policy [55] as well as variants of it, such as
those that consider known service times [31] or general ser-
vice time distributions [15]. Arachne [67], SKQ [81], and
many other systems [29, 33, 63, 82] leverage power-of-two
or the more general power-of-k choices for load balancing.
Others have studied work shedding approaches [73] and com-
pared them to other policies [22, 77]. Finally, several recent
proposals implement more advanced load-balancing policies
such as JBSQ [43] in NIC hardware [18, 34, 70, 74].

Our findings are consistent with past comparisons of load-
balancing policies. For example, we confirm that “work-first”
load-balancing policies such as work stealing have better
performance [21, 22, 27]. However, our analysis differs in
two key ways. First, we are not aware of any prior work that
compares load-balancing policies in the presence of realis-
tic load-balancing overheads; prior work either assumes no
overhead or analyzes a single system and its policy and over-
heads. Second, prior work evaluates metrics such as delay,
throughput, and communication rate, but does not consider
CPU efficiency. In contrast, we compare the tradeoffs that
different policies make in terms of latency and efficiency, in
the presence of load-balancing overheads.

Core-allocation policies. Existing systems adopt a variety of
different policies for deciding when to reallocate cores, either
across different applications or between cores available for
applications and those designated for network processing or
a file system. These approaches make decisions based on task
arrivals [40], queueing delay [12, 20, 26, 52, 53, 60, 67], CPU
utilization [12, 20, 35, 41, 67], or failure to find work [4, 7, 21,
27, 40, 76]. None of these systems compare different policies
in the presence of the same overheads, so it is not possible to
determine from these works which policies provide the best
combination of latency and efficiency. Some past work points
out that work-stealing cores can waste considerable CPU
cycles, and proposes policies for yielding cores to mitigate
this [4, 7, 21]. However, these policies target throughput and
fairness for longer tasks (e.g., hundreds of microseconds or
more); in contrast, our analysis focuses on which policies
provide the best efficiency and latency for microsecond-scale
tasks, and thus yields different conclusions.

Implementing policies. The systems Syrup [37] and
ghOSt [32] enable users to control scheduling policies in
the kernel scheduler, network stack, and network card from
code written in userspace. These systems are complementary
to our work; they make it easier to express scheduling policies
but do not specify which policies users should implement.

8 Conclusion
Numerous systems have been designed to support latency-
sensitive datacenter applications while dynamically allocating
cores to react to changes in load. However, these systems
often come with a significant efficiency penalty with short
tasks. In this paper, we systematically evaluated the effects of
different policy choices on efficiency and latency to determine
which load-balancing and core-allocating schemes achieve the
best performance when considering realistic overheads. Work
stealing is the definitive best policy option in today’s hardware
while the core-allocation space is more complex. We designed
and implemented two core-allocation policies which provide
consistent and configurable performance on the Pareto frontier
when paired with work stealing and demonstrated how they
can improve efficiency without sacrificing latency.
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A Appendix
A.1 Proof of NP-Hardness for Optimal Core Alloca-

tions

In this appendix, we prove that finding the optimal tail la-
tency for a given CPU usage bound or vice versa is NP-hard,
assuming a finite number of cores and non-constant service
times. We show this using a reduction from the multiprocessor
scheduling decision problem.
Multiprocessor Scheduling Problem [28]
Input: A non-zero number of cores c, a set of tasks T where
each task t has a positive integer service time (or length) l(t),
and an overall deadline D for completing all tasks.
Question: Is there a schedule of the tasks T over the c cores
that meets the overall deadline D? Such a schedule assigns a
start time to each task t such that there are never more than c
tasks being handled simultaneously and for each task, its start
time plus l(t) is at most D.

The Multiprocessor Scheduling Problem is NP-complete,
assuming that all tasks do not have the same service time;
with constant service times, this problem is trivial [28].
Optimal Core-Allocation Problem
Input: A non-zero number of cores c where each core can be
either on or off, and transitioning from off to on requires a
start-up time of S; a set of tasks T where each task t has an
arrival time a(t) and a positive integer service time l(t); the
total “wasted” CPU time W , or time spent by cores while they
are starting up or on but not handling a task; a tail latency
percentile P < 1 (e.g., 99.9th percentile); and a tail latency
target L.
Question: Is there a schedule for the c cores and the tasks T
such that tasks are only scheduled on cores that are on, the
wasted CPU time is at most W , and the latency at percentile
P is at most L? A schedule for the cores assigns periods of on
and off time to each, noting that it takes S time to transition
from off to on. A schedule for the tasks assigns a start time to
each task t such that the start time for t is at least a(t) and the
number of tasks being handled simultaneously never exceeds
the number of cores that are on. Finally, for P percent of the
tasks, their start time plus l(t) is at most L.

We can reduce the multiprocessor scheduling problem to
the optimal core allocation problem as follows. The number
of cores in the core allocation problem matches that in the
multiprocessor scheduling problem and we set L = D. We
construct the set of tasks for the core allocation problem by
replicating the tasks and their service times from the multi-
processor scheduling problem and setting them to all arrive at
the beginning (i.e., a(t) = 0 for all t ∈ T ). In addition, we add
additional dummy tasks with l(t)> D so that the tasks in the
multiprocessor scheduling problem constitute P percent of the
total tasks in the core allocation problem; because the dummy
tasks cannot possibly meet the latency bound, the problem is
only solvable by having all non-dummy tasks meet the latency
bound. Finally we set the start-up time S to be zero and the
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(a) 30% load. (b) 70% load.

Figure 9: Performance of core-allocation and load-balancing policies from Figure 5 at additional loads.

wasted CPU time bound W to be high enough to be irrelevant
(e.g., W ≥ c ·D). We leave it as a simple exercise to show that
there exists a polynomial time algorithm for such an instance
of the optimal core allocation problem if and only if there is
a polynomial time algorithm for the corresponding instance
of the multiprocessor scheduling problem. In addition, the
optimal core allocation problem is clearly in NP; thus it is
NP-complete.

Because the optimal core allocation decision problem is
NP-complete, the optimization problem of finding the optimal
tail latency for a given efficiency bound or vice versa is NP-
hard. This proof assumes that the service time distribution
l(t) is not constant; the optimization problem with constant
service times may also be NP-hard but this cannot be shown
using the proof above.

A.2 Extended Factor Analysis

In this appendix we include additional data omitted for space
in the factor analysis.

A.2.1 Additional Loads for Static Curves

In Figure 5, we compared the performance of different load-
balancing policies across different average service times to
demonstrate that beating static allocations is more difficult
with short tasks. The graphs look at both efficiency and latency
simultaneously by keeping load constant. In Figure 9, we vary
the offered load to 30% and 70%. To see a complete view of
efficiency and latency (without static load-balancing curves
for reference) across load, see Figure 7.

A.2.2 Additional Service Time Distributions

We compared the load-balancing policies across different
service time distributions. Specifically, we created static al-
location performance curves for each load-balancing policy
for both constant service times of 1 µs and a bimodal dis-
tribution with 500 ns service times for 90% of requests and
5.5 µs for the remaining 10% (average service time of 1 µs).
In Figure 10, we see that across these different service time
distributions, work stealing consistently outperforms the other

load-balancing policies. Since load-balancing choices are less
significant to end-to-end performance when service times are
constant (Figure 10a), work stealing provides smaller bene-
fits.

(a) Constant service times (1 µs).

(b) Bimodal service time distribution.

Figure 10: Performance of load-balancing policies with static core
allocations for different service time distributions.
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