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Abstract
A longstanding performance challenge in datacenter-based 
applications is how to efficiently handle incoming client re-
quests that spawn many very short (𝜇s scale) jobs that must 
be handled with high throughput and low tail latency. When 
no assumptions are made about the duration of individual 
jobs, or even about the distribution of their durations, this 
requires blind scheduling with frequent and efficient pre-
emption, which is not scalably supported for 𝜇s-level tasks.
We present Tiny Quanta (TQ), a system that enables effi-

cient blind scheduling of 𝜇s-level workloads. TQ performs 
fine-grained preemptive scheduling and does so with high 
performance via a novel combination of two mechanisms: 
forced multitasking and two-level scheduling. Evaluations 
with a wide variety of 𝜇s-level workloads show that TQ 
achieves low tail latency while sustaining 1.2x to 6.8x the 
throughput of prior blind scheduling systems.

CCS Concepts: • Software and its engineering → Sched-
uling; Coroutines; Automated static analysis.
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1 Introduction
Network requests from clients to datacenter-based applica-
tions commonly produce fan outs of many requests (in some
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cases, thousands) to internal services. Today, these internal
requests often have a service time of a few microseconds [6];
thus, efficiently scheduling 𝜇s-level requests with low tail
latency and high throughput is essential to maintain end-to-
end latency service level objectives (SLOs) for these applica-
tions [20, 50]. The presence of these very short jobs, while
the overall service time distribution remains broad [7, 17, 62],
has made efficient scheduling more difficult because it is now
more likely that very short requests end up queuing behind
long ones, resulting in what is called head-of-line blocking.

Tominimize the occurrence of head-of-line blocking, some
state-of-the-art scheduling systems have assumed knowl-
edge of either individual requests’ service times or the over-
all service time distribution [21]. However, such assumptions
limit the system’s generality and the system must be mod-
ified to adapt to new request types or evolving workloads.
Therefore, we do not assume knowledge of either individual
request times or their distribution in this work. This results
in what is often referred to as “blind” scheduling. Our paper
considers the problem of blindly scheduling 𝜇s-level work-
loads with broad service time distributions. (If the service
time distribution were not broad, so most jobs had similar du-
rations, then FCFS-like scheduling would suffice [52, 54, 59].)
To avoid head-of-line blocking, a blind scheduler must

preempt currently running jobs in order to allow jobs queued
behind them a chance to get service, without having any
notion of how much more processing the current job or
the queued job will require. Given this lack of knowledge,
typically scheduling systems are designed around the notion
of processor sharing [3, 25, 53]; that is, there is some minimal
quantum of service that they allocate to jobs before they
preempt them and provide service to the next job. Since
there are inherent delays in switching between jobs, there
is a tension between making the quantum size small so as
to minimize head-of-line blocking, but large enough so that
the frequency of preemption – with its resulting overhead
– does not reduce the ability of the system to achieve high
throughput. To calibrate the discussion below, we consider
what it would take to maintain high throughput with sub-5𝜇s
quanta. This goal presents three main challenges.

First, previous approaches that use blind scheduling with
small quanta relied on preemptive threadmultitasking, which
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Figure 1. 99.9% slowdown with different quantum sizes, with no preemption overhead.

incurs excessive switching overhead for small quanta. In par-
ticular, even with an optimized interrupt system enabled
by non-standard virtualization features, Shinjuku [34], a 𝜇s-
scale preemptive scheduling system, still has a ≈1𝜇s thread
interrupt latency, which causes severe throughput degra-
dations when operating at sub-5𝜇s quanta. An alternative
approach to preemption is cooperative multitasking, where
jobs leverage light execution contexts and explicitly yield
back to a scheduler. The main challenge of this approach is
to efficiently ensure that jobs relinquish control after con-
suming roughly a quantum of service.
The second challenge in a system that executes sub-5𝜇s

quanta is to make its scheduler architecture scalable. Scalabil-
ity is required because the total work a scheduler performs
to pick the next job to run increases linearly with the num-
ber of preemptions, which roughly increases as the inverse
of the quantum size. Shinjuku [34] has a CPU that runs a
centralized scheduler, which becomes the throughput bottle-
neck as it needs to receive network requests, load-balance
requests across multiple cores (e.g., 16), trigger interrupts and
schedule jobs at sub-5𝜇s quanta, and send network replies.

Third, as we interleave job executions at a finer granular-
ity, CPU caches can become polluted and result in additional
overheads. Prior work on ms-level job scheduling has shown
that cache misses due to frequent context switching induce
overhead comparable to the switching itself [37]. However,
there has been little research on cache behaviors when pre-
emptions happen at 𝜇s scale. Thus, the third challenge is to
understand the cache behaviors with sub-5𝜇s quanta and
ensure that cache pollution does not become a bottleneck.

To meet these challenges, we present a system called Tiny
Quanta (TQ) that leverages sub-5𝜇s quanta to blindly sched-
ule 𝜇s-level jobs with wide service time distributions. In par-
ticular, TQ achieves low latency and high throughput and
solves the challenges above with the following key ideas.

First, TQ uses coroutines as execution contexts and a com-
piler pass that inserts probe points to implement what we call
forced multitasking. Using the compiler to generate probes
frees developers from manually instrumenting yield points,
while taking advantage of the low switching cost of corou-
tines. Moreover, TQ strategically places physical-clock based
probes far apart to achieve significantly lower probing over-
head, compared with prior compiler instrumentation tech-
niques based on instruction counters [2, 8, 10].

To solve the scalability challenge, TQ uses a two-level
scheduler architecture that consists of two components: a
global job dispatcher that load-balances jobs across cores on
admission, and a per-CPU job scheduler that interleaves jobs’
quanta. The two-level scheduler design avoids the through-
put bottleneck of a centralized scheduler by distributing a
job’s scheduling policy across two cores. For each CPU, TQ
uses the blind policy of processor sharing across a CPU’s
admitted jobs. For the job dispatcher, TQ adopts the join-
the-shortest-queue (JSQ) load balancing policy with a new
tie-breaking heuristic that improves the latency of long jobs.
Lastly, compared with centralized scheduling, TQ’s two-

level scheduler architecture also ensures better cache locality
by having each job reside in a single CPU throughout its
execution.With a set of carefully designed microbenchmarks
that study 𝜇s-scale data cache behaviors, we show that sched-
uling with small quanta in TQ is unlikely to cause notable
performance degradation due to cache pollution.

We compare TQ to two state-of-the-art systems that sup-
port 𝜇s-scale blind scheduling: Shinjuku [34] andCaladan [27].
With a wide range of 𝜇s-level workloads, we show that TQ,
by efficiently scheduling with tiny quanta, can sustain 1.2x
to 6.8x the load of prior systems, while maintaining low tail
latency. Moreover, we show that the proposed forced multi-
tasking and two-level scheduling mechanisms play a vital
role in achieving TQ’s superior performance.
The contributions of this paper are: (i) a forced multi-

tasking mechanism that enables cheap preemptions at small
quanta by strategically placing physical-clock based probes;
(ii) a two-level schedulingmechanism that allows fine-grained
scheduling in a scalable and cache friendly manner; and (iii)
a synthesis of these mechanisms into a solution that achieves
low tail latency and high throughput for 𝜇s-level tasks with-
out assuming knowledge about tasks’ service times.

2 The Case for Tiny Quanta and the Need
for Low Overhead

In this section, we quantify the desirability of using small,
or tiny, quanta on a system that schedules jobs blindly. We
consider the optimistic case where there is no overhead in
preemption. Our point is to argue that if we could reduce the
overhead sufficiently, then reducing the quantum size is of
value. As we shall see later, TQ achieves a low enough over-
head so that a quantum size of 1𝜇s is practical (compared to
the 5𝜇s or larger quanta that are supported by Shinjuku [34]).
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Figure 2.Maximum request rates until a slowdown of 10 is reached, for different preemption overheads and quantum sizes.

To make our argument, we simulate an “extreme bimodal”
workload from prior work [21, 54]: a mix of 99.5% small re-
quests with a service time of 0.5𝜇s, and 0.5% long requests
with a service time of 500𝜇s. Our simulation includes 5 sec-
onds of Poisson requests arriving to a 17-core system, where
one core serves as a centralized scheduler that schedules jobs
among other 16 cores using a processor sharing policy [67].
We measure the metric of slowdown; i.e., the server-side
service time to execute a job relative to its service time when
the job runs to completion [31]. Figure 1 shows the 99.9% tail
slowdown with varying quantum sizes. As expected, smaller
quanta lead to less slowdown due to reduced head-of-line
blocking of small (0.5𝜇s) jobs. In contrast, Shinjuku [34] only
supports quanta of at least 5𝜇s and, as the chart shows, that
leads to larger slowdowns at higher loads.
To see the importance of reducing overheads, Figure 2

shows the maximum achievable request rate while keeping
the 99.9% slowdown under 10 (denoted in Figure 1 by the
horizontal line), for three different values of preemption
overheads: 0ns, 100ns, and 1𝜇s. If we focus on the 0ns curve,
we see that smaller quanta enable the system to run at higher
loads: about 40% higher compared with 5𝜇s quanta. However,
when the overhead is 100ns, this benefit is reduced, and in
fact decreasing the quanta below 1𝜇s reduces the system
capacity. With an overhead of 1𝜇s, any reduction below 3𝜇s
reduces the capacity. Thus, this graph shows that reducing
the quanta allows a system to sustain higher loads with low
tail latency, but only if the overheads are sufficiently small.

The rest of this paper is devoted to meeting the three chal-
lenges: reducing the overhead, making scheduling scalable,
and ensuring that the caches do not become a bottleneck.

3 Design
As shown in Figure 3, TQ consists of twomain components: a
dispatcher distributing jobs among cores, and workers sched-
uling and executing job quanta on their dedicated cores.
Requests get processed as follows. First, the dispatcher polls
incoming packets from the NIC. Second, the dispatcher di-
rectly forwards each request to a worker with a load balanc-
ing policy, according to its view of each worker’s load. Third,
each worker schedules and executes quanta of their jobs with
a blind scheduling policy. Fourth, once a worker finishes a
job, it sends out the response without going through the
dispatcher. Lastly, the dispatcher obtains from each worker
statistics regarding its load for future load balancing.

①

②

⟳

⟳

⟳

③④

⟳

⑤

Figure 3. TQ: system diagram.

TQ differs from prior preemptive scheduling systems in
twoways: (i) workers independently perform quantum sched-
uling without external interrupts, and (ii) the dispatcher per-
forms only job load balancing. These differences correspond
to the two mechanisms of TQ that we will now describe:
forced multitasking (§3.1) and two-level scheduling (§3.2).

3.1 Forced multitasking
To switch between jobs with low overhead, TQ leverages
coroutine yields. Compared with hardware interrupts, corou-
tine yields are orders of magnitude cheaper: as a user-space
mechanism within a single process, coroutine yield requires
no system calls nor changes to virtual memory mappings.
Stackful coroutines yield in tens of nanoseconds [14], whereas
stackless coroutines can yieldwithin a single digit of nanosec-
onds [23, 49]. Besides having lower overhead, coroutine
yields also differ from hardware interrupts in terms of being
cooperative – the switching is initiated voluntarily within
each task rather than relying on externally generated in-
terrupts. This however introduces the question of how to
ensure that job coroutines all yield in a timely fashion.
The standard practice of having developers manually in-

sert yield points [19, 46, 68] is suboptimal. Firstly, it is cum-
bersome for developers to do so, especially given that 𝜇s-level
jobs are designed to have few obvious yield points like block-
ing I/O and system calls. Secondly, it is hard and error-prone
for developers to decide where to insert yield points in order
to achieve an accurate interval between consecutive yields.
Compiler-instrumented yielding:To free developers from
having to instrument their code, TQ automatically analyzes
and instruments the provided code at compile time. The in-
strumented code can then be used by TQ at run time to enable
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fine-grained multitasking. TQ thus takes care of ensuring
the yielding of instrumented jobs, without burdening either
developers or system operators. Note that TQ assumes the
availability of application code for instrumentation.
The challenge here is how to place yield points so that a

running job does not exceed its quanta. Even with advanced
static analysis, predicting the execution time of a series of
instructions is challenging, primarily because of instructions
like memory loads that can take a varied duration of time [8].
To address this issue, TQ delays the placement of yield points
until run time. This is done by making a distinction between
probe points and yield points. Probe points are placed at lo-
cations where yields can potentially happen, but the decision
to actually yield or not is made only at run time.
The compiler inserts probe points at a sufficient density

(see below) so that the program is capable of yielding often
enough to not exceed the quantum, for all quanta above a
given minimum size. At run time, the target quantum is spec-
ified in units of cycles and whenever a probe point is reached
the probe then checks whether enough cycles have passed
since the previous yield point; if so, it calls the yield func-
tion, otherwise it resumes the operation. Such an approach
also supports dynamic quantum sizes, which are needed for
scheduling policies like least-attained-service (LAS) [51, 55].

The key challenge here is to introduce only minimal prob-
ing overhead, while ensuring a reasonable preemption timing
accuracy. Inserting more probes leads to better accuracy, but
also more wasted probing cycles. If too many probing cycles
are spent on finding the appropriate coroutine yield timings,
we still end up with an expensive multitasking mechanism.
Prior approach: Prior compiler-instrumentation work uses
an instruction-counter based approach, where the compiler
maintains an instruction counter with probes – each probe
increments the counter by some number that is determined at
the compile time. The most commonmethod is to instrument
a probe at the end of every basic block, which increments the
counter by the number of instructions of that basic block [10].
At run time, one needs to first translate the target quantum
(in terms of cycles) into a target instruction count, and then
the instrumented probes yield if the value of the instruction
counter is larger than the target instruction count.

The instruction-counter based approach is fundamentally
inaccurate because of this translation from cycles into in-
struction counts; using either a default or a profiled instruction-
to-cycle ratio leads to poor accuracy as instructions can
take varied durations [8]. More importantly, while a sin-
gle instruction-counter probe is cheap, instruction-counter
based approaches can introduce significant overhead. This
is because one has to insert a large number of probes to
maintain the correctness of the counter (because, for any exe-
cution path, the instruction counter needs to be incremented
roughly by the actual number of instructions along that path).
Since a basic block often contains only a few instructions,
inserting a probe in every basic block is expensive. Recent

1 extern __thread uint64_t last_yield_ts, target_cycle;
2 extern __thread void (*call_the_yield)();
3 inline void probe() {
4 uint64_t cur_ts = rdtsc();
5 if(cur_ts - last_yield_ts >= target_cycle) {
6 call_the_yield();
7 last_yield_ts = rdtsc();
8 }
9 }

Listing 1. Pseudocode illustrating how TQ’s instrumented
probes decide whether to yield based on physical clocks.

work [8, 10] tries to reduce the number of probes by extract-
ing (single-entry single-exit) SESE structures [33, 47] and
instrument probes only at the exits of these structures. Such
optimizations fail if the program has complex structures be-
cause the compiler ends up instrumenting at the granularity
of single basic blocks. In fact, we measured that the state-of-
the-art implementation [8] of the instruction-counter based
approach introduces a 60% probing overhead to a RocksDB
GET operation (i.e., the instrumented GET takes 60% longer
to finish), as it adds over 1000 probes for this 2𝜇s job.
Our approach: Instead, TQ proposes a different approach
based on using physical clocks: each probe instead reads the
hardware cycle counter (e.g., RDTSC in x86)1 and yields if
enough cycles have passed since the previous yielding point.
At first glance, using physical clocks only worsens the issue:
a single RDTSC instruction can take 20 to 40 cycles [26],
much more expensive than an instruction counter, which
uses only ADD instructions. However, it turns out that by
placing these physical-clock based probes strategically, we
can achieve much lower overhead with better accuracy, due
to two desirable properties of physical clock:
• Placement flexibility: Unlike the instruction-counter
basedmethod, where probes have to be inserted frequently
to maintain the correctness of the counter, physical-clock
probes can function correctly in arbitrary program loca-
tions. This allows us to place probes further apart, result-
ing in much fewer probes. For the same GET operation,
we only instrument 40 probes, 30 times fewer than the
instruction-counter based approach. Since RDTSC’s la-
tency is often partially overlapped with other instructions
due to out-of-order execution, a 30x reduction in the num-
ber of probes leads to substantially lower overhead.

• Timing accuracy: Since a physical clock is inherently
more accurate than instruction count, we can achieve
accurate timings despite sparser placements.
To exploit the placement flexibility and timing accuracy

of a physical clock, TQ instruments a small set of probes that
bound the maximum number of instructions of any execu-
tion paths between two probes. Specifically, if the longest
execution path between two probes is greater than the bound,
1TQ assumes the availability of hardware cycle counters that can be accessed
by software. Besides x86, there are other architectures that also meet this
requirement: e.g., ARM with cyccnt, RISC-V with rdtime.
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a probe will be inserted along that path, and this process is re-
peated until the longest path is shorter than the bound. Note
that TQ uses instruction counts only for controlling the probe
density whereas the yield timing is determined by physical
clock readings, so that unlike instruction-counter based ap-
proaches, it does not suffer from inaccurate yield timings
due to cycle-to-instruction translations. For loops, unless
the number of iterations can be statically deduced, TQ (by
default) instruments an iteration counter and only invokes
the probe when the counter reaches a target number of iter-
ations, which is calculated by dividing the target bound with
the number of instructions of the longest uninstrumented
path in the loop body. TQ applies various optimizations to
reduce the loop instrumentation overhead when feasible. For
instance, if an induction variable is found, TQ will invoke
probes based on the variable, saving the cost of maintain-
ing an iteration counter. For nested loops that consist of a
single basic block, TQ will clone the loop into two versions
(i.e., original and instrumented), and select the one to use
based on the runtime iteration count: the uninstrumented
version is invoked if the iteration count is under the target,
so that TQ can bypass the instrumentations in this case. For
function calls, if they are to uninstrumented functions (e.g.,
system calls or external libraries), since the compiler does
not know the execution paths within that function, TQ adds
an additional instruction cost for the function call.
By placing physical-clock based probes far apart while

bounding the maximum distance between them as described
above, TQ’s compiler pass achievesmuch lower probing over-
head and better timing accuracy than the state-of-the-art
instruction-counter based approach (§5.6). This lower prob-
ing overhead leads to to better performance when scheduling
𝜇s-level workloads (§5.4). Therefore, by combining efficient
compiler-instrumented probings and cheap coroutine yields,
TQ’s forced multitasking mechanism allows switching be-
tween tasks with extremely small overhead, which is critical
for efficient scheduling of small quanta.

3.2 Two-level scheduling
TQ’s scheduling framework needs to simultaneously meet
two requirements. First, it should be highly scalable, specifi-
cally, the scheduler itself should not be the throughput bottle-
neck as we reduce the quantum sizes. Second, the scheduler
should be capable of intelligently distributing workloads
across cores to achieve low latency and high throughput.
Prior approach: Existing systems generally adopt a cen-
tralized scheduling framework. In this framework, the dis-
patcher processes incoming packets into pending jobs, main-
tains a centralized queue of pending or preempted jobs and
schedules jobs’ quanta among worker cores following some
scheduling policy. Such a centralized scheduling approach
allows the dispatcher to steer quanta to different cores with a
global view, hence resulting in good scheduling performance.
However, such an approach has limited scalability. Since
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Figure 4. Centralized (CT) vs. two-level scheduling (TLS)
with different policies: 99.9% slowdown for the long job of the
Extreme Bimodal workload, with no preemption overhead.

the dispatcher is responsible for preempting and scheduling
quanta for all the cores, its load increases reversely propor-
tional to the quantum sizes. For Shinjuku, as the quantum
size goes down from 5𝜇s, its dispatcher becomes incapable of
preempting and scheduling a large number of cores (§5.6). In
this case, to maintain the centralized scheduling framework,
one has to increase the number of dispatcher cores. However,
it is hard to efficiently maintain a centralized queue among
multiple dispatcher cores, leading to wasted cycles [34].
Our approach:One important reasonwhy priorwork adopts
a centralized scheduling framework, despite the scheduler
being a potential bottleneck, is that they rely on hardware
interrupts to multiplex jobs [34, 70]. Since the interrupt has
to be initiated externally, the dispatcher core is thus responsi-
ble for triggering interrupts and hence scheduling quanta. In
TQ, however, job multiplexing is enabled with forced multi-
tasking, which does not require the assistance of an external
core. Moreover, since TQ focuses on blind scheduling, TQ’s
dispatcher does not need to parse packets for job information
that is needed for quantum scheduling (e.g., job type) [21, 52].
These opportunities lead us to a two-level scheduling frame-
work, where the dispatcher only performs a minimal set of
work while still achieving good scheduling performance.

Specifically, in TQ, the dispatcher only performs job load
balancing, whereas quantum scheduling is offloaded to each
worker core. When a request arrives, the dispatcher directly
forwards it to a core according to some blind load balancing
policy (see below). The job then stays in the core, where
its quanta will be scheduled by a per-core scheduler corou-
tine. When the job finishes, the worker core directly sends a
response back to the client without going through the dis-
patcher and updates statistics used for the dispatcher’s load
balancing decisions, e.g., incrementing a counter to reflect
the total number of finished jobs. The dispatcher checks the
statistics of each core to have an accurate view of its load.
In terms of scalability, the dispatcher only performs op-

erations for load balancing and hence can sustain a high
throughput. Moreover, since these operations are performed
at the job granularity, the dispatcher’s load largely remains
constant with smaller quanta. This prevents the dispatcher
from being a bottleneck for fine-grained scheduling (§5.6).
In terms of scheduling performance, the performance of

two-level scheduling depends on the combination of work-
ers’ quantum scheduling policy and dispatcher’s load bal-
ancing policy. For quantum scheduling, TQ’s workers adopt
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the processor sharing (PS) policy, which is provably optimal
in terms of tail sojourn time for broad/heavy-tailed service
time distributions [16, 64]. Sojourn time refers to the dura-
tion between when a job arrives and when it finishes. For
load balancing, TQ’s dispatcher adopts the Join-the-Shortest-
Queue (JSQ) policy, because (i) it is a blind policy that can be
implemented with minimal overhead (§4), and (ii) the JSQ-PS
combination, formally denoted as a M/G/K/JSQ/PS model, is
provably near-optimal for the mean sojourn time [29, 58].

However, there is no theoretical work on the tail sojourn
time of the JSQ-PS combination. We thus study the tail per-
formance of JSQ-PS via both simulations and system evalua-
tions. One interesting finding is that the tie-breaking policy
of JSQ can substantially impact the latency of long jobs. Con-
sidering the “extreme bimodal” workloads (with 0.5𝜇s short
jobs and 500𝜇s long jobs) used in §2, at a medium load, there
is usually a long job on each core. In this case, naive (i.e.,
random) tie-breaking suffices for short jobs, because a short
job finishes in a single quantum and will thus receive similar
treatment on any core that has the smallest number of jobs.
However, with naive tie breaking, the dispatcher may assign
long jobs to a core with a long job that has a large remain-
ing processing time, which results in a larger slowdown. To
address this issue, TQ leverages a tie-breaking policy that
we call Maximum-Serviced-Quanta (MSQ). With MSQ, the
dispatcher breaks a tie by picking the core that has serviced
the largest number of quanta for its current jobs, with the ex-
pectation that this core has small remaining processing time.
MSQ can be efficiently implemented (§4) and improves the
tail latency of long jobs: in Figure 4, we simulate the 99.9%
slowdown of the long job for centralized (CT) and two-level
scheduling (TLS), and show that compared with centralized
PS scheduling, JSQ-PS with MSQ tie breaking achieves com-
petitive performance, much better than random tie breaking.
While CT performs better in simulation without factoring in
the preemption overhead, TLS can be efficiently supported,
allowing TQ to significantly outperform Shinjuku [34], a
centralized preemptive scheduling system (§5.3).
Besides being highly scalable and delivering good sched-

uling performance, another benefit of two-level scheduling
is better cache locality. Specifically, centralized scheduling
distributes quanta among cores and causes cache misses due
to the requested cache lines being in a different core. In con-
trast, with two-level scheduling, each job naturally resides
in the same core throughout its execution. This leads to an
efficient use of the private caches (i.e., L1, L2 cache) and thus
a better cache performance for 𝜇s-level workloads (§5.5).

4 Implementation
We implemented TQ’s compiler pass and scheduling runtime
with 2200 and 1400 lines of C code respectively.2

2TQ is available at https://github.com/zhluo94/TinyQuanta.

Compiler-instrumented yielding: We implemented TQ’s
forced multitasking with Boost coroutine [57], which has
a 20 to 40 ns yield time [15]. We implemented TQ’s probe
instrumentation as a LLVM compiler pass [35]. The instru-
mentation process starts by compiling the provided code into
LLVM IR. We then analyze and transform this initial LLVM
IR with standard passes like LoopSimplify and ScalarEvo-
lution [41]. TQ’s compiler pass then takes in the simplified
IR, inserts physical-clock based probes and outputs an in-
strumented IR, which finally gets compiled into object files.
As illustrated in Listing 1, TQ’s instrumented probes call a
thread-local function pointer (i.e., call_the_yield) when they
decide to yield. However, each Boost coroutine has a specific
yield function that is generated at the coroutine construction.
Therefore, before resuming a task coroutine, the scheduler
coroutine binds the call_the_yield function to the yield func-
tion of that task coroutine, so that the task coroutine can
correctly yield back to the scheduler coroutine.
Networking: TQ implements a user-space network stack
with DPDK [24], which has one RX queue for the dispatcher
to poll for requests and one TX queue for each worker core
to push out responses. A multi-producer, single-consumer
memory pool is used for RX buffers so that worker cores can
independently release parsed buffers back to the pool.
Dispatcher: To support JSQ load balancing, TQ’s dispatcher
keeps track of the number of unfinished jobs of each worker.
It does so by computing the difference between the number
of jobs it has assigned to a worker and the number of jobs the
worker has finished, which it knows by reading the counter
maintained by each core. The dispatcher also reads the num-
ber of serviced quanta of each core to implement MSQ tie
breaking. Note that the sizes of these worker-side counters
do not impose upper limits on the number of finished jobs or
serviced quanta for each worker: the worker increments its
counters regardless of overflows, and the dispatcher keeps
track of the total number by computing the delta between
its reads. When a request arrives, the dispatcher forwards it
to the least loaded worker via a lockless ring buffer.
Workers: Each worker thread starts with a scheduler corou-
tine, which initializes a set of task coroutines. The scheduler
coroutine keeps track of idle and busy coroutines. When
there are idle coroutines, the scheduler coroutine polls the
dispatch queue to see whether there are pending requests
from the dispatcher. If so, the scheduler coroutine parses the
request, marks an idle coroutine as busy and resumes it to
execute this request. After the task coroutine has run for a
quantum specified by the scheduler coroutine, it yields to the
scheduler, who decides the next coroutine to resume based on
its scheduling policy. To emulate PS, the scheduler maintains
a queue for busy coroutines, enqueues yielded coroutines at
the tail and resumes the coroutine at the head. If a task corou-
tine finishes a request, the scheduler pushes the response to
the per-core TX queue, increments the counter of finished
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Workloads Request Runtime (𝜇s) Ratio

Extreme Bimodal Short 0.5 99.5%
Long 500 0.5%

High Bimodal Short 1 50%
Long 100 50%

TPC-C

Payment 5.7 44%
OrderStatus 6 4%
NewOrder 20 44%
Delivery 88 4%
StockLevel 100 4%

EXP N/A 1 (mean) N/A

RocksDB (0.5% SCAN) GET 1.2 99.5%
SCAN 675 0.5%

RocksDB (50% SCAN) GET 1.2 50%
SCAN 675 50%

Table 1. The list of evaluated workloads.

jobs, and marks the coroutine as idle. The scheduler also up-
dates the number of serviced quanta of its current jobs. Both
counters (i.e., for finished jobs and serviced quanta) reside in
a cache line that is periodically read by the dispatcher. One
could extend the implementation and have the dispatcher
and each worker communicate in multiple cache lines, if
they wanted to add features that require more information
exchanges between the dispatcher and workers.
Critical section:We currently disable preemptions during
critical sections by providing jobs with specific functions to
call at the entrances and exits of these sections like Shin-
juku [34]. Under the hood, these functions set/unset a flag
that makes the call_the_yield function bypass its yielding.

5 Evaluation
In this section, we present our evaluation setup (§5.1) and in-
vestigate key questions regarding TQ: (i) how small of quanta
can TQ support? (§5.2), (ii) how well does TQ perform com-
pared to prior systems that support blind scheduling? (§5.3),
(iii) how do different components of TQ contribute to its
performance? (§5.4), (iv) how do caches perform with small
quanta in TQ? (§5.5), and (v) how do forced multitasking and
two-level scheduling perform? (§5.6). We answer (i), (ii) and
(iii) by evaluating TQ with 𝜇s-level workloads, (iv) and (v)
by testing the specific mechanism with microbenchmarks.

5.1 Evaluation setup
Workloads:We evaluate a wide range of 𝜇s-level workloads
from prior work [21, 34, 54], which consist of both synthetic
and real workloads. For synthetic workloads, High Bimodal
and Extreme Bimodal workloads exhibit broad service time
distributions and test how well TQ prevents head-of-line
blockings. The TPC-C workload represents a multi-modal
service time distribution in standardized OLTP models [61].
The Exp(1) workload has an exponential service time distri-
bution with a mean of 1𝜇s. For real workloads, we evaluate
an in-memory key-value store built over RocksDB [44], with
different ratios of SCAN operations (0.5% and 50%) and test
if TQ can ensure low latency of GETs at high throughput.

Systems: We evaluate TQ and two state-of-the-art systems
that support blind scheduling: Caladan [27] and Shinjuku [34].
For TQ, unless stated otherwise, we use 2𝜇s quanta, each
scheduler coroutine schedules its task coroutines in a PS
fashion and the dispatcher performs JSQ load balancing with
MSQ tie breaking. We observe similar performance with
more than four task coroutines per worker core and we
use eight for the evaluation. Caladan implements a FCFS
scheduling policy by steering packets to worker cores using
RSS hashes and having worker cores run jobs to completion.
Worker cores perform work stealing to minimize load im-
balance. In the default mode, Caladan has an IOKernel core
interacting with the NIC. The alternative is the directpath
mode, where worker cores directly send/receive their packets
to/from the NIC. This eliminates the throughput bottleneck
of the IOKernel but incurs packet processing overhead to the
worker cores. We thus evaluate Caladan under both modes
and report the better one for each workload. Shinjuku uses
the virtualization features of Dune [9] to preempt worker
cores with interrupts. It supports scheduling with quanta as
small as 5𝜇s.We evaluate Shinjuku’s single-queue scheduling
policy, which effectively emulates PS scheduling. Since Shin-
juku becomes unstable when having to preempt jobs very
frequently, we follow the practice of prior work [21, 34] and
use different quantum sizes that lead to the optimal perfor-
mance of Shinjuku for different workloads: 5𝜇s for Extreme
Bimodal and High Bimodal, 10𝜇s for TPC-C and Exp(1) and
15𝜇s for RocksDB, and report Shinjuku’s performance under
these quantum sizes.
Client: We adapted the open-loop load generator from [27]
that transmits requests under a Poisson process centered
at the workload’s average service time over UDP. For each
request rate, the experiment runs for 10 seconds and the first
10% samples are discarded to remove warm-up effects. Our
client setup is identical for all systems.
Latency metrics:We measured two forms of latency met-
rics: (i) end-to-end latency, which is recorded by the client
and includes the network round trip time, and (ii) sojourn
time, which is calculated by the server as the time elapsed
from the dispatcher receiving an incoming request to when
the server finishes executing the job. We use end-to-end la-
tency for all the comparisons between systems and sojourn
time only for highlighting the effects of different configu-
rations within TQ. Focusing on the tail latency, we report
the 99.9 percentile of the measured latency. For the TPC-C
workload, we also report the overall slowdown, as it helps
calibrate the differences in durations of multiple job types.
Testbed: We conduct experiments using two dual-socket
servers with 28-core Intel Xeon Platinum 8176 CPUs op-
erating at 2.1 GHz. We use one of the servers for TQ and
Caladan, equipped with a 40 Gbits/s Mellanox Connect X-5
Bluefield NIC, and the other for Shinjuku, equipped with a
10 Gbits/s Intel 82599ES NIC that is compatible with Shin-
juku’s network stack. Note that network bandwidth was not
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Figure 5. Extreme bimodal with different Qs – SHORT.
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Figure 6. Extreme bimodal with different Qs – LONG.
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Figure 7. Extreme Bimodal and High Bimodal workloads.

a bottleneck in our evaluation, with less than 10% utilization.
Caladan and TQ run on Ubuntu 22.04 with Linux kernel
version 5.15.0. Shinjuku runs on Ubuntu 18.04 with Linux
kernel version 4.4.0. Shinjuku uses one hyperthread for the
net worker and another for the dispatcher, collocated on the
same physical core. Caladan runs its IOKernel on a single
core, and TQ runs its dispatcher on a single core. All systems
use 16 worker threads on dedicated physical cores.

5.2 Benefits of small quanta
As shown in §2, scheduling with smaller quanta leads to
lower latency, and if a system does so with sufficiently low
overhead, it can simultaneously maintain a high throughput.
We thus would like to know whether TQ is efficient enough
to support quantum sizes much smaller than prior systems?

To answer this question, we evaluate TQ with the Extreme
Bimodal workload and vary the quantum sizes from 10𝜇s
down to 0.5𝜇s and measure the 99.9 percentile latency under
different request rates. The results are shown in Figures 5 and
6. For the short jobs, TQ not only achieves lower latency with
smaller quanta, but is also able to maintain the same maxi-
mum throughput as 10𝜇s quantawith a quantum size as small
as 2𝜇s. In fact, TQ is able to maintain significant throughput
until a quantum size as small as 0.5𝜇s. Similar trends can be
seen on the long jobs as well, where the throughput remains
almost identical for quantum sizes larger than 0.5𝜇s. Such
results indicate that (i) TQ’s forced multitasking mechanism
is sufficiently cheap even for quantum sizes as small as 1𝜇s,
and (ii) TQ’s two-level scheduling framework can schedule
0.5𝜇s quanta without being the throughput bottleneck.

5.3 Comparison with Caladan and Shinjuku
Next, we evaluate TQ’s performance and show that it achieves
1.2x to 6.8x of the throughput of Shinjuku and Caladan,
while maintaining low latency for all the workloads.

Extreme Bimodal: The Extreme Bimodal workload has a
dispersion ratio (i.e., the ratio between the runtimes of long
and short jobs) of 1000, the largest among all the evaluated
workloads. Figure 7 shows the tail latencies of the short and
long jobs for all three systems. For Caladan, while the system
can sustain high throughput for the long jobs, because of us-
ing a FCFS policy, it achieves poor latency for short jobs due
to severe head-of-line blocking. For Shinjuku, it was not able
to sustain high throughput due to the large preemption over-
head, resulting in poor performance for both short and long
jobs, despite having low latency at small load. In contrast, TQ
maintains a smaller than 50𝜇s latency of the short jobs until
a request rate of 4.5Mrps, which is 2.6x of Shinjuku’s and
2.1x of Caladan’s. For long jobs, TQ sustains 1.8x and 1.2x
the throughput of Shinjuku and Caladan respectively due
to having lower overhead. Caladan achieves lower latency
than TQ for the long jobs at medium load, which is expected
as FCFS prioritizes the scheduling of long jobs.
High Bimodal: Compared with the Extreme Bimodal work-
load, the High Bimodal workload has a lower request rate
and dispersion ratio. As shown in Figure 7, Shinjuku is able
to achieve higher throughput under 50𝜇s end-to-end latency
budget for the short jobs compared with Caladan, due to
performing preemptive scheduling. With a target 50𝜇s end-
to-end latency for short jobs, TQ sustains 1.65x and 1.33x
the throughput of Caladan and Shinjuku respectively. For
long jobs, TQ is able to sustain the highest throughput, while
maintaining similar latency as Shinjuku. Caladan achieves a
lower latency for long jobs again due to its FCFS policy.
TPC-C: TPC-C allows us to observe how each system prior-
itizes jobs of different sizes. Between Caladan and Shinjuku,
as shown in Figure 8, Shinjuku achieves lower latency for
short jobs because of using preemptive scheduling; whereas
Caladan achieves higher throughput for long jobs, because
Shinjuku pays a large preemption overhead. TQ gets the best
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Figure 8. TPCC – overall slowdown and latency of different request types.
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Figure 9. RocksDB workloads with different ratios of SCAN operations.
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Figure 10. EXP(1) workload.

of both worlds – by supporting fine-grained scheduling with
very small overhead, it achieves both low latency for short
jobs and high throughput for longer ones. Overall, under a
10x overall slowdown budget, TQ achieves a throughput that
is 1.29x of Caladan’s and 1.18x of Shinjuku’s.
RocksDB: Results for RocksDB workloads are shown in Fig-
ure 9. For the workload with 0.5% SCAN operations, with a
50𝜇s latency budget for GET operations, TQ achieves 1.93x
and 2.07x the throughput of Shinjuku and Caladan respec-
tively. For the workload with 50% SCAN, despite the gap be-
ing smaller due to lower request rates, TQ achieves a through-
put that is 1.28x of Shinjuku’s and 2.21x of Caladan’s, under
a 50𝜇s latency budget of GET operations. For the SCAN op-
erations, despite having higher latency at medium loads, TQ
manages to sustain 1.63x and 1.13x the throughput of Shin-
juku for workloads with 0.5% and 50% SCAN respectively.
Exponential: Lastly, we evaluate the Exp(1) workload, which
is a challengingworkload as it has a broad continuous service
time distribution as well as a high request rate. As shown
in Figure 10, by efficiently scheduling small quanta, TQ is
able to sustain 11Mrps with a smaller than 50𝜇s end-to-end
latency, which is 6.85x of Shinjuku’s and 1.21x of Caladan’s.

5.4 Breakdown of TQ’s performance
Next, we create different variants of TQ by altering specific
parts of the design and measure their performance in com-
parison to TQ. The differences thus directly inform us how

components of TQ contribute to its performance. The results
for RocksDB with 0.5% SCAN are shown in Figures 11 and 12.
Forced multitasking: As elaborated in §3.1, TQ’s forced
multitasking leverages the combination of (i) efficient prob-
ings and (ii) cheap coroutine yields to achieve lower over-
head. Moreover, it achieves accurate preemption timings by
probing with a physical clock. We thus evaluate three vari-
ants: TQ-IC, where the state-of-the-art instruction-counter
based instrumentation technique [8] is used instead of TQ’s
compiler pass; TQ-SLOW-YIELD, where a 1𝜇s delay is added
to the coroutine yield; and TQ-TIMING, where we emulate
inaccurate preemption timings with 1𝜇s quanta for GET and
3𝜇s quanta for SCAN. The results show that both components
have significant impacts on TQ’s performance. For TQ-IC,
with a 50𝜇s latency budget for the GET operation, it achieves
only 62% of TQ’s throughput due to the large probing over-
head. This shows that an efficient instrumentation technique
is crucial to TQ’s high performance for 𝜇s-level workloads,
and thus we later evaluate TQ’s compiler pass with a large
set of benchmark applications (§5.6). For TQ-SLOW-YIELD,
it achieves 81% of TQ’s throughput, and the gap increases
for workloads that require more preemptions (e.g., RocksDB
with 50% SCAN). This shows that low switching cost is essen-
tial for efficient fine-grained scheduling. While inaccurate
preemption timings do not hurt TQ as much as large probing
or yielding overhead does, as shown with TQ-TIMING, it can
still degrade performance. In particular, with a 50𝜇s latency
budget for GETs, TQ-TIMING achieves only 81% of TQ’s
throughput, as GET operations now receive worse head-of-
line blocking due to having inaccurately small quanta.
Two-level scheduling: Two-level scheduling brings high
scalability and good cache locality, which we will evaluate in
§5.5 and §5.6. Here we focus on the JSQ-PS policy with three
variants: TQ-RAND, TQ-POWER-TWO and TQ-FCFS. The
first two adopt different load balancing policies: random and
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Figure 11. RocksDB 0.5% SCAN with different variants of TQ for forced multitasking.
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Figure 12. RocksDB 0.5% SCAN with different variants of TQ for two-level scheduling.

power-of-two choices [45], whereas the last one uses FCFS as
its quantum scheduling policy. The results show that JSQ-PS
is critical for TQ’s performance. For the load balancing policy,
TQ-RAND achieves only 53% of TQ’s throughput under a
50𝜇s latency budget for GET operations. This is due to the
load imbalances caused by random dispatching and shows
the value of a smart dispatcher. TQ-POWER-TWO achieves
similar throughput but incurs higher latency than TQ. This
matches with understandings from theoretical work [39, 45]:
between JSQ and power-of-two load balancing, JSQ delivers
better scheduling performance whereas it is easier to support
power-of-two at a large scale. Since JSQ can be efficiently
implemented in TQ (§4), it is a better choice. As for the
scheduling policy, similar to Caladan, TQ-FCFS achieves
only 34% of TQ’s throughput for GET operations due to
severe head-of-line blocking. While it achieves lower latency
for SCAN due to FCFS prioritizing long jobs, PS allows TQ
to better meet latency SLOs for 𝜇s-level workloads.

5.5 Cache behavior at microsecond scale
To understand 𝜇s-scale cache behavior, we investigate two
questions: (i) how do smaller quanta in TQ affect cache be-
havior? and (ii) how does two-level scheduling (TLS) impact
cache performance compared to centralized scheduling (CT)?

5.5.1 Experiment setup. To study cache behavior under
𝜇s-scale preemptions for workloads with different footprints,
we run experiments on the following synthetic workload:
Workload: We create an array of configurable size, fix a
random element iteration order, and iterate through the array
100K times in that order via pointer chasing. We repeat this
experiment for array sizes ranging from 1KB to 1MB.
This workload is well suited for studying data cache be-

havior at 𝜇s-scale. First, iterating over arrays multiple times
exhibits strong intra-job locality, which can be affected by
preemptions [36, 48]. Specifically, a cache line that was ac-
cessed by a preempted job is likely to be already evicted
when the job resumes and re-accesses it. Second, random
pointer chasing amplifies cache misses. When a preempted

job re-accesses a cache line that has been evicted due to other
jobs’ accesses, if a sequential access pattern is adopted, the
cache line is likely prefetched by the hardware after the job
resumes, which effectively conceals the negative effects of
preemptions. In contrast, with random pointer chasing, (i)
hardware prefetching is ineffective and (ii) cache miss la-
tency is fully exposed. This thus allows us to clearly observe
how preemptions can hurt cache performance. Lastly, vary-
ing array sizes emulates 𝜇s-level workloads with different
intra-job locality. We focus on intra-job locality as it is di-
rectly affected by preemptions. Inter-job locality, where the
previous access of a cache line happened in earlier jobs, is
not investigated. As shown later, even for jobs like RocksDB
SCAN, there is a substantial amount of intra-job locality.
Methodology: We emulate two-level and centralized sched-
uling as follows. For each of the 16 cores, we have a thread
that (i) accesses X elements via random pointer chasing of
an array and (ii) saves the progress for the current array,
switches to the next array and repeats (i). Step (i) emulates a
job iterating over its array in a quantum. X is set to match
with the target quantum size. Step (ii) emulates switching
to a different job (and thus a different array) for the next
quantum. By emulating scheduling frameworks instead of
invoking specific mechanisms, we are able to study cache
pollution that stems from interleaving job executions.
Arrays iterated by each core depend on the scheduling

framework. For TLS, each core switches between its own
set of arrays (e.g., arrays 0-3 for core 0). This matches with
how each job resides in a single core in TLS. For CT, arrays
are shared among all the cores and cores iterate over each
array on a rotating basis. This captures how quanta of a job
can be executed by different cores in CT. We set 4 arrays per
core (64 in total) to emulate 4 jobs per core, a high degree of
concurrency occuring when TQ operates under heavy loads.

We report the average pointer access latency to study the
cache behaviors. For question (i), we show the access latency
of TLS with different quantum sizes. For question (ii), we
compare the access latency of CT with TLS’s at 2𝜇s quanta.
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Scheduling
framework

The first access of the element within the quantum?
Yes No

CT C * J * A A
TLS J * A A

Table 2. Reuse distances of accesses in array iterations for
centralized (CT) and two-level scheduling (TLS); C: number
of worker cores, J: number of jobs per core, A: array size.
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Figure 13. Access latency for TLS with different quanta.
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Figure 14. Access latency for TLS vs. CT.

5.5.2 Experiment results. To methodically interpret our
results, we first present an analysis based on reuse distance, a
metric widely used for studying cache behavior [11, 22, 40]:
Reuse distance analysis: Reuse distance of a memory ac-
cess refers to the number of distinct accesses between the
previous access to the same address and the current access.
For example, when iterating over an array multiple times,
all accesses starting from the second iteration have a reuse
distance of the array size. For a fully associative LRU cache
of capacity C, an access with a reuse distance R results in
a cache hit if R is smaller than C, cache miss if otherwise.
Despite modern CPU caches not being fully associative and
adopting complex replacement policies, this property still
largely holds for cache capacity misses.

Table 2 shows how smaller quanta and scheduling frame-
works affect reuse distances of our workloads. With preemp-
tions, the reuse distance of an access depends on whether it
is the first access to this element within the quantum: the an-
swer is yes if the prior access happens in a previous quantum,
and the reuse distance is amplified beyond the array size.
Therefore, if the quantum is small w.r.t. array iteration time,
more accesses will fall into this category and have amplified
reuse distances, likely causing cache misses. Moreover, since
the amplification ratio equals to the number of jobs sharing
the cache, for L1/L2 caches, TLS bounds the ratio by the
number of jobs per core (4 in our case), whereas the ratio for
CT is the total number of concurrent jobs (64 in our case).
Effects of smaller quanta: Figure 13 shows TLS’s access
latency for different quanta. There are two findings, both
consistent with our analysis. First, smaller quanta cause extra
cache misses only for 8-32KB arrays. This is because: (i) with
a 32KB L1 cache and 8-32KB arrays, accesses with amplified
(with a ratio of 4) reuse distances cause L1 misses, whereas
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Figure 15. Reuse distances for RocksDB GET and SCAN.

other accesses are L1 hits; and (ii) the iteration time of 8-
32KB arrays is on par with the evaluated quanta, and hence
varying quanta makes a notable difference in the ratio of
accesses with amplified distances. As a result, while TLS-
16𝜇s has mostly L1 hits for array sizes up to 32KB, TLS-2𝜇s
receives L1 misses once arrays are larger than 8KB. Note
that TLS-2𝜇s does not cause extra L2 misses compared with
TLS-16𝜇s for arrays larger than 256KB (with a 1MB L2 cache).
This is because condition (ii) no longer holds: even 16𝜇s is too
short w.r.t. the iteration time of 256KB arrays, and thus most
accesses of TLS-16𝜇s suffer from amplified distances for these
arrays, in the same way as TLS-2𝜇s. Second, for sufficiently
small quanta, further shrinking their sizes does not worsen
the cache performance: TLS-0.5𝜇s behaves similarly as TLS-
2𝜇s, because even for small 8KB arrays, 2𝜇s is short enough
that most accesses already have amplified distances.
These findings indicate that small quanta are unlikely to

cause notable performance degradation due to cache pollu-
tion: (i) additional cache misses occur only for accesses with
certain reuse distances, and (ii) even with these accesses, the
latency of resulting L1 misses can mostly be hidden by out-
of-order executions of processors in real workloads [1, 60].
TLS vs. CT: Figure 14 compares the access latency of TLS
and CT for 2𝜇s quanta. Consistent with our analysis, CT
introduces additional cache misses due to a higher reuse
distance amplification ratio, which in turn stems from CT
having more concurrent jobs per core. Specifically, with a
ratio of 64, CT has L2 cache misses starting from an array
size of 16KB (16KB*64=1MB), whereas TLS does not incur
L2 cache misses for arrays smaller than 256KB.
Implications to real workloads: While real workloads
involve more complex access patterns, one can infer the im-
pacts of smaller quanta or scheduling frameworks with our
experiment results. Specifically, one can estimate the cache
behaviors received by a workload based on the reuse dis-
tances of its accesses [22, 40]. For instance, if a workload has
most reuse distances smaller than 8KB, it is expected to be
largely insensitive to reducing quantum sizes (Figure 13). Fig-
ure 15 shows the histograms of reuse distances for RocksDB
GET and SCAN, which wemeasure with MICA [13], an open-
source Pin tool. Both jobs have very few accesses with reuse
distances that are sensitive to quantum size changes: only
3.7% and 4.5% out of all accesses have reuse distances larger

315



ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Luo et al.

Overhead (%) MAE (cycles)
CI CICY TQ CI CICY TQ

water-nsquared 2.97 4.55 5.86 743 635 432
water-spatial 3.78 6.22 7.42 501 456 408
ocean-cp 6.96 7.43 5.05 1966 1502 617
ocean-ncp 5.44 6.91 4.98 905 606 774
barnes 15.47 17.29 13.31 351 371 304
volrend 15.99 17.41 9.06 2766 972 698
fmm 4.44 4.61 4.38 3136 3027 496

raytrace 3.17 5.27 2.77 1259 1012 661
radiosity 38.69 48.32 20.27 664 672 593
radix 0.43 0.45 0.42 1126 1212 770
fft 7.39 7.63 7.22 2255 1558 1858
lu-c 21.21 23.51 17.31 2613 2063 322
lu-nc 25.74 29.42 22.24 979 749 418

cholesky 32.53 32.24 14.07 1619 1608 845
reverse-index 25.38 26.03 16.32 8685 8479 3023
histogram 7.94 8.41 7.58 4297 3989 757
kmeans 30.42 31.04 11.72 842 858 749
pca 86.92 87.11 27.16 923 912 598

matrix-multiply 5.96 6.41 2.51 5817 5312 1875
string-match 45.81 49.92 12.86 368 376 359

linear-regression 39.17 39.82 16.61 513 522 503
word-count 8.23 9.18 6.28 1037 917 773
blackholes 1.47 2.09 4.57 1578 1562 1103
fluidanimate 2.96 2.99 2.44 6169 6061 2319
swaptions 26.64 34.22 18.80 991 621 466
canneal 6.52 6.91 3.73 4721 4712 2311

streamcluster 4.81 5.86 6.05 461 311 341
mean 17.65 19.30 10.05 2122 1891 902

Table 3. Comparison among CI, an instruction-counter
based mechanism [8], CI-Cycles, a hybrid variant with CI-
gated physical clock checking [8], and TQ’s compiler pass;
MAE: mean average error.

than 8KB. This matches with our evaluation that the cache
behaviors of both jobs are similar across different quanta.

5.6 Performance of TQ’s components
Next, we evaluate with a microbenchmark (i) whether TQ’s
physical clock based approach consistently outperforms prior
instruction-counter based approaches and (ii) whether two-
level scheduling allows TQ to easily scale to small quanta.
Compiler instrumentation:We measure the probing over-
head and yield timing accuracy of TQ’s compiler pass with
a set of workloads used by prior work [8]. These workloads
come from SPLASH-2 [66], Phoenix [56] and Parsec [12]
benchmark applications. They encompass various program
structures and hence were used to test the completeness of
the instrumentation technique. Our results from running
these workloads on a single core with a target quantum size
of 2𝜇s are summarized in Table 3. Compared with Compiler
Interrupt (CI) [8], the state-of-the-art instruction-counter
based instrumentation technique, TQ incurs lower probing
overheadwhile achieving better timing accuracy for 22 out of
the total 26 workloads. For the other 4 workloads, it increases
their overhead by less than 3%. In contrast, it significantly
reduces the overhead of several workloads that have large

probing overhead with CI, e.g., string-match from 45% to 12%,
cholesky from 33% to 14% and kmeans from 30% to 12%. As
elaborated in §3.1, the reason for this substantial reduction
of probing overhead is that unlike CI, which instruments a
large number of probes to maintain the correctness of its
instruction counter, TQ places much sparser physical-clock
based probes. In fact, TQ introduces 25x, 59x and 47x less
probes than CI, for the string-match, cholesky and kmeans
workloads respectively. Moreover, TQ achieves a better yield
timing accuracy thanks to the accuracy of physical clocks.
On average, compared with CI, TQ’s compiler pass reduces
the probing overhead by 43% and the mean average error
(MAE) of yield timings by 57%. Note that the key to the su-
perior performance of TQ’s compiler pass is not only the
decision to use a physical clock, but more importantly the
way TQ strategically places these probes. To see this, we
evaluate CI-Cycles, a hybrid variant that checks the physical
clock when the CI instruction counter is over the thresh-
old [8]. With the same probe placement as CI, CI-Cycles
inherits some drawbacks of instruction-counter based prob-
ing: it further increases the already high probing overhead
of CI, and still delivers worse timing accuracy than TQ as the
physical clock checking is only invoked when instruction
counters reach thresholds. Both using physical clocks, such a
dramatic difference in the performance of TQ and CI-Cycles
thus shows the importance of strategic probe placements.
Two-level scheduling:Next, we evaluatewhether two-level
scheduling allows TQ to easily schedule in small quanta. For
this we have the client generate a workload consisting of
only 1-ms jobs and Shinjuku and TQ try to schedule with
some target quantum sizes. Note that we use long 1-ms jobs
to minimize the packet processing cost of the dispatcher
and focus on the overhead of quantum scheduling. For each
quantum size, we then check the maximum number of cores
that Shinjuku’s and TQ’s dispatchers can support. Specifi-
cally, we compute the average quantum size scheduled by
the dispatcher, and if it is more than 10% larger than the
target, we conclude that the dispatcher is unable to keep up
with the target quantum size at this number of cores, so we
reduce the number of cores. We repeat this process until we
find the number of cores that the dispatcher can sustain for
the target quantum size. The results for target quantum sizes
from 5𝜇s to 0.5𝜇s are shown in Figure 16. Shinjuku is unable
to keep up with 16 cores as soon as the quantum size drops
from 5𝜇s to 3𝜇s, and is only capable of maintaining 3 cores if
the target quantum size is 0.5𝜇s. In contrast, TQ’s dispatcher
performs operations at the job granularity, hence reducing
quantum sizes does not increase its load. TQ’s dispatcher is
thus not a bottleneck for scheduling in small quanta.

6 Limitations and Discussion
Dispatcher throughput: Due to the simplicity of its de-
sign – not parsing incoming requests to make forwarding
decisions nor maintaining a queue, TQ’s dispatcher achieves
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Figure 16. Cores supported with varying quantum sizes.

much higher throughput (14 Mrps) than centralized schedul-
ing systems [32, 34, 52], where a dispatcher core can sustain
only around 5 Mrps. However, such a dispatcher through-
put could still be insufficient for short requests and many
cores. To mitigate this issue, one could increase the number
of dispatcher cores: achieving good load balancing with mul-
tiple dispatchers has been extensively studied in theoretical
work [63, 69], and future systems can build on these studies.
Synthetic cache evaluation: Evaluating with synthetic
workloads does not directly show the cache behavior of real
applications. As the first systematic study on cache behavior
under 𝜇s-scale preemptions, TQ makes this compromise to
obtain interpretable results: real workloads exhibit complex
memory access patterns, making it challenging to dissect
the results. Prior works that studied cache behavior under
kernel context switches adopt synthetic workloads for simi-
lar reasons [37, 40]. We thus call for large-scale evaluations
with an extensive suite of real 𝜇s-level workloads.
MSQ: MSQ tie-breaking is motivated by empirical observa-
tions in bimodal workloads, and its performance with other
service time distributions requires more theoretical studies.
Reentrancy: The current job of a worker core may call a
function that a concurrent job yielded at (i.e., reentrancy),
which can be problematic as these jobs reside in the same pro-
cess. To handle this, one needs to prevent unsafe reentrancy
by not instrumenting yields in non-reentrant functions. TQ
currently does not provide support for this.

7 Related work
𝝁s-scale scheduling: To schedule workloads with broad ser-
vice time distributions, prior work either assumes additional
knowledge of the workload [21], or blindly preempts at a
coarser time grain due to the large interrupt overhead [34].
We focus on blind scheduling and show that TQ outperforms
prior systems by efficiently scheduling in tiny quanta, and
TQ’s forced multitasking and two-level scheduling mecha-
nisms could provide benefits in non-blind settings as well.
Concord [32] is a concurrent work that also focuses on 𝜇s-
scale scheduling.While both use coroutines, TQ and Concord
differ substantially in their designs. Concord adopts the cen-
tralized scheduling framework and replaces interrupts with
a shared cache line that the dispatcher periodically sets and
workers frequently read. As a result of centralized scheduling,
Concord suffers from lower scalability: its dispatcher’s load
increases with the preemption frequency and core numbers
and it saturates at around 4 Mrps. In contrast, TQ relies on
forced multitasking so that preemptions take place without

needing any external signal. This enables two-level schedul-
ing and allows TQ’s dispatcher to have a constant load with
smaller quanta and sustain up to 14 Mrps.
Compiler-instrumented yields: Analyzing and instru-
menting code either statically or dynamically for purposes
other than inserting yield points, such as collecting program
statistics and finding event frequency, has been extensively
studied in prior literature [4, 5, 18, 42, 65]. For prior works
that instrument code for preemptions like TQ, most of them,
as discussed earlier, use an instruction-counter based ap-
proach [2, 8, 10], which suffers from large probing overhead
and poor timing accuracy (§5.6). This large probing over-
head results in significant performance degradation when
scheduling 𝜇s-level workloads (§5.4). Ghosh et al. [28] use
compiler-instrumented hooks to implement timer interrupts
for Nautilus [30], a research kernel with a parallel runtime
that has full access to the entire machine. It performs instru-
mentation based on estimated cycle counts of instructions
and is conceptually most similar to TQ’s approach. In com-
parison, TQ achieves sparser instrumentation by bounding
only the maximum distances between probes and leverages
optimizations like self-loop cloning and reusing the induc-
tion variable to further reduce probing overhead. None of
these prior work exploits low-overhead forced multitasking
to achieve efficient scheduling of 𝜇s-level workloads.
Hardware-assisted user-level interrupt: User Interrupts
(UINTR) [43] is a hardware technology that enables deliver-
ing interrupts directly to user space. It achieves low interrupt
overhead without requiring non-standard use of hardware
virtualization features like Shinjuku. However, the overhead
of UINTR is around 2000 cycles, which is still notable for
small quanta. LibPreemptible [38], a preemptive user-level
threading library based on UINTR, thus only supports quan-
tum sizes larger than 3𝜇s. In contrast, TQ achieves good
performance with quantum sizes down to 1𝜇s thanks to the
ns-scale preemption overhead of forced multitasking.
Two-level scheduling: Similar concepts to two-level sched-
uling were proposed in other contexts such as rack-scale
scheduling [70]. In TQ, we identify the opportunity enabled
by forced multitasking, where there no longer needs to be
an external core triggering interrupts, to efficiently schedule
𝜇s-level workloads in a single machine. Moreover, TQ lever-
ages MSQ tie breaking to reduce the latency of long jobs.

8 Conclusion
This paper addressed a longstanding problem, that of how to
blindly schedule 𝜇s-level workloads with broad service time
distributions such that the tail latency is low and the system
capacity is high. TQ achieves this with forced multitasking
(that enables cheap preemptions at small quanta) and two-
level scheduling (that handles fine-grained scheduling in a
scalable and cache friendly manner). We show that this novel
combination allows efficient scheduling with tiny quanta.
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