Flexplane: An Experimentation Platform for Resource Management in Datacenters

Amy Ousterhout, Jonathan Perry, Hari Balakrishnan, Petr Lapukhov

Resource Management

- Dozens of new resource management schemes
 - DCTCP, PDQ, RCP, HULL, pFabric, LSTF, D³, etc.
- Difficult to experiment with in real networks
 Schemes require changes to hardware routers

Experimentation with Resource Management

- Experimentation in real networks
 - Software routers limited throughput
 - Programmable hardware limited flexibility
- Experimentation in simulation (e.g., ns2)
 - Does not accurately model real network stacks, NICs, and applications

Flexplane: an Experimentation Platform

- Goal: faithfully evaluate resource management schemes
- Flexplane provides:
 - Accuracy predict behavior of hardware
 - Flexibility express schemes in C++
 - High throughput run at hardware rates

Approach: Whole-Network Emulation

- Emulator maintains a model of the real network
- Users implement schemes in emulated routers
- Packets experience same behavior in emulator as in hardware network running same scheme

Three Steps for Each Packet

- Convey abstract packet to emulator
- *Emulate* the network behavior
 Time divided into timeslots
- *Reflect* behavior onto real network

Accuracy

• Goal: predict behavior of a hardware network

Hardware:
$$l = u + q$$

Flexplane:
$$l' = r + t_e + q_e + u + q' \le 4u + q' + q_e$$

I: latency*t*: transmission delay*u*: unloaded delay*s*: switch delay*q*: queuing delayu = t + s*r*: RTT to the emulator

Flexplane API

Decouples framework from schemes

Emulator AbstractPkt *pkt) int classify(AbstractPkt *pkt, int port) enqueue(AbstractPkt *pkt, int port, int queue) AbstractPkt *schedule(int output_port)

Multicore Emulator Architecture

- Pin network components (routers, endpoints) to cores
 - Router state not shared across cores
- Communication via FIFO queues
- Achieves 761 Gbits/s with 8 cores

Flexplane is Easy to Use

 Implemented several resource management schemes in dozens of lines of code

scheme	LOC
drop tail queue manager	39
RED queue manager	125
DCTCP queue manager	43
priority queueing scheduler	29
round robin scheduler	40
HULL scheduler	60
pFabric QM, queues, scheduler	251

Flexplane is Accurate

- Bulk TCP: 5 senders, 1 receiver
- Throughput 9.2-9.3 Gbits/s vs. 9.4 Gbits/s in hardware
- Similar queue occupancies

	Queue Occupancies (MTUs)			
	Hardware		Flexpl	ane
	median	σ	median	σ
DropTail	931	73.7	837	98.6
RED	138	12.9	104	32.5
DCTCP	61	4.9	51	13.0

Flexplane Enables Experimentation

Reproducible research in real networks

- Experiment with Spark
 - Results depend on resource management scheme and application