
Flexplane:	  An	  Experimenta0on	  Pla3orm	  
for	  Resource	  Management	  in	  Datacenters	  

Amy	  Ousterhout,	  Jonathan	  Perry,	  
Hari	  Balakrishnan,	  Petr	  Lapukhov	  



Resource	  Management	  

•  Dozens	  of	  new	  resource	  management	  
schemes	  
– DCTCP,	  PDQ,	  RCP,	  HULL,	  pFabric,	  LSTF,	  D3,	  etc.	  

•  Difficult	  to	  experiment	  with	  in	  real	  networks	  
– Schemes	  require	  changes	  to	  hardware	  routers	  

	  



Experimenta0on	  with	  Resource	  
Management	  

•  Experimenta0on	  in	  real	  networks	  
– SoSware	  routers	  -‐	  limited	  throughput	  
– Programmable	  hardware	  -‐	  limited	  flexibility	  

•  Experimenta0on	  in	  simula0on	  (e.g.,	  ns2)	  
– Does	  not	  accurately	  model	  real	  network	  stacks,	  
NICs,	  and	  applica0ons	  

	  



Flexplane:	  an	  Experimenta0on	  
Pla3orm	  

•  Goal:	  faithfully	  evaluate	  resource	  
management	  schemes	  

•  Flexplane	  provides:	  
– Accuracy	  –	  predict	  behavior	  of	  hardware	  
– Flexibility	  –	  express	  schemes	  in	  C++	  
– High	  throughput	  –	  run	  at	  hardware	  rates	  



Approach:	  Whole-‐Network	  Emula0on	  

•  Emulator	  maintains	  a	  model	  of	  the	  real	  network	  
•  Users	  implement	  schemes	  in	  emulated	  routers	  
•  Packets	  experience	  same	  behavior	  in	  emulator	  
as	  in	  hardware	  network	  running	  same	  scheme	  



Three	  Steps	  for	  Each	  Packet	  

•  Convey	  abstract	  packet	  to	  emulator	  
•  Emulate	  the	  network	  behavior	  
– Time	  divided	  into	  0meslots	  

•  Reflect	  behavior	  onto	  real	  network	  



Accuracy	  

•  Goal:	  predict	  behavior	  of	  a	  hardware	  network	  

l ' = r + te + qe +u+ q ' ≤ 4u+ q '+ qe

l = u+ q

l:	  latency	  
u:	  unloaded	  delay	  
q:	  queuing	  delay	  
r:	  RTT	  to	  the	  emulator	  

t:	  transmission	  delay	  
s:	  switch	  delay	  
u	  =	  t	  +	  s	  
	  

Flexplane:	  

Hardware:	  



Flexplane	  API	  

•  Decouples	  framework	  from	  schemes	  

Emulator	  

int	  route(AbstractPkt	  *pkt)	  
int	  classify(AbstractPkt	  *pkt,	  int	  port)	  
enqueue(AbstractPkt	  *pkt,	  int	  port,	  int	  queue)	  
AbstractPkt	  *schedule(int	  output_port)	  	  

incoming	  
packets	  

outgoing	  
packets	  

route	   classify	   enqueue	   schedule	  



Mul0core	  Emulator	  Architecture	  

•  Pin	  network	  components	  (routers,	  endpoints)	  
to	  cores	  
– Router	  state	  not	  shared	  across	  cores	  

•  Communica0on	  via	  FIFO	  queues	  
•  Achieves	  761	  Gbits/s	  with	  8	  cores	  
	  



Flexplane	  is	  Easy	  to	  Use	  

•  Implemented	  several	  resource	  management	  
schemes	  in	  dozens	  of	  lines	  of	  code	  

Queue Occupancies (MTUs)
Hardware Flexplane

median s median s
DropTail 931 73.7 837 98.6

RED 138 12.9 104 32.5
DCTCP 61 4.9 51 13.0

Table 2: Flexplane achieves similar queue occupancies and
standard deviations in occupancies (s ) as hardware.

use an ECN-marking threshold of 65 MTUs, as recom-
mended by its designers [8].

Flexplane achieves similar aggregate throughput as the
hardware. All three schemes consistently saturate the
bottleneck link, achieving an aggregate throughput of
9.4 Gbits/s in hardware, compared to 9.2-9.3 Gbits/s in
Flexplane. This 1-2% difference in throughput is due to
bandwidth allocated for abstract packets in Flexplane.
Queueing. During the experiment described above, we
sample the total buffer occupancy in the hardware router
every millisecond, and the emulator logs the occupancy
of each emulated port at the same frequency.

Table 2 shows that Flexplane maintains similar queue
occupancies as the hardware schemes. For DropTail it
maintains high occupancies (close to the max of 1024)
with large variations in occupancy, while for the other two
schemes the occupancies are lower and more consistent.
Flexplane does differ from hardware in that its occupan-
cies tend to be slightly lower and to display more variation.
We believe this is due to the effectively longer RTT in
Flexplane. When the congestion window is reduced, the
pause before sending again is longer in Flexplane, allow-
ing the queues to drain more.

During the Flexplane experiments, the hardware queue
sizes remain small: the mean is 7-10 MTUs and the 95th
percentile is 14-22 MTUs. These numbers are small com-
pared to the queue sizes in the emulator or in the hardware
queues during the hardware experiments, and indicate that
queueing in the hardware network does not significantly
impact the accuracy of Flexplane (§3.4).
Flow completion time. Next we evaluate Flexplane’s ac-
curacy at the application level in terms of flow completion
time (FCT). We run an RPC-based application in which
four clients repeatedly request data from 32 servers. The
size of the requested data is determined by an empirical
workload derived from live traffic in a production data-
center that supports web search (first presented in [8]). It
includes a mixture of flows of different sizes. 53% of the
flows are small flows of less than 100KB, but 37% of the
bytes come from large flows of 10MB or larger. Request
times are chosen by a Poisson process such that the clients
receive a specified load between 10% and 80%. We nor-
malize the FCT for each flow to the average FCT achieved
by a flow of the same size, in an unloaded network, when
flows are requested continuously.

class PriorityScheduler : public Scheduler {

public:

AbstractPkt

*

PriorityScheduler::schedule(uint32_t

port) {

/

*

get the mask of non-empty queues

*

/

uint64_t mask = m_bank->non_empty_qmask(port);

uint64_t q_index;

/

*

bsfq: find the first set bit in mask

*

/

asm("bsfq %1,%0":"=r"(q_index):"r"(mask));

return m_bank->dequeue(port, q_index);

}

private:

PacketQueueBank

*

m_bank;

}

Figure 5: Source code for a priority scheduler in Flexplane over
 64 queues. A PacketQueueBank stores packets between the
calls to enqueue and schedule.

scheme LOC
drop tail queue manager 39

RED queue manager 125
DCTCP queue manager 43

priority queueing scheduler 29
round robin scheduler 40

HULL scheduler 60
pFabric QM, queues, scheduler 251

Table 3: Lines of code (LOC) in the emulator for each resource
management scheme.

We run this application for DropTail and DCTCP, in
Flexplane and in the hardware network. Figure 4 shows
the average normalized FCTs. For both small flows and
large flows, results with Flexplane closely match results
obtained with a hardware network. For loads up to 60%
with both schemes, Flexplane estimates average normal-
ized FCTs of hardware to within 2-8% for small flows
and 3-14% for large flows. Accuracy decreases slightly
for higher loads of 70% and 80%, but remains within 18%
for small flows and 24% for large flows.

5.2 Flexplane Utility
In this section, we evaluate the utility of Flexplane. We
study how easy it is to write new schemes in Flexplane and
provide four examples of how Flexplane can be useful.
Ease of use. To demonstrate the simplicity of implemen-
tation, we show the key portions of the source code for
priority queueing scheduling in Figure 5. Most schemes
require only a few dozen lines of code to implement, as
shown in Table 3. pFabric requires significantly more
code than other schemes because it does not maintain
packets in FIFO order between the enqueue and dequeue
stages; 170 of the 251 lines of code are used to implement
custom queueing.
Parameter tuning. Flexplane enables users to quickly
tune protocol parameters to accommodate different net-
works. For example, the authors of HULL [9] conducted
evaluations using a testbed with 1 Gbits/s links; we use
Flexplane to tune HULL’s parameters to fit our 10 Gbits/s

8



Flexplane	  is	  Accurate	  

•  Bulk	  TCP:	  5	  senders,	  1	  receiver	  
•  Throughput	  9.2-‐9.3	  Gbits/s	  vs.	  9.4	  Gbits/s	  in	  
hardware	  

•  Similar	  queue	  occupancies	  
Queue Occupancies (MTUs)
Hardware Flexplane

median s median s
DropTail 931 73.7 837 98.6

RED 138 12.9 104 32.5
DCTCP 61 4.9 51 13.0

Table 2: Flexplane achieves similar queue occupancies and
standard deviations in occupancies (s ) as hardware.

use an ECN-marking threshold of 65 MTUs, as recom-
mended by its designers [8].

Flexplane achieves similar aggregate throughput as the
hardware. All three schemes consistently saturate the
bottleneck link, achieving an aggregate throughput of
9.4 Gbits/s in hardware, compared to 9.2-9.3 Gbits/s in
Flexplane. This 1-2% difference in throughput is due to
bandwidth allocated for abstract packets in Flexplane.
Queueing. During the experiment described above, we
sample the total buffer occupancy in the hardware router
every millisecond, and the emulator logs the occupancy
of each emulated port at the same frequency.

Table 2 shows that Flexplane maintains similar queue
occupancies as the hardware schemes. For DropTail it
maintains high occupancies (close to the max of 1024)
with large variations in occupancy, while for the other two
schemes the occupancies are lower and more consistent.
Flexplane does differ from hardware in that its occupan-
cies tend to be slightly lower and to display more variation.
We believe this is due to the effectively longer RTT in
Flexplane. When the congestion window is reduced, the
pause before sending again is longer in Flexplane, allow-
ing the queues to drain more.

During the Flexplane experiments, the hardware queue
sizes remain small: the mean is 7-10 MTUs and the 95th
percentile is 14-22 MTUs. These numbers are small com-
pared to the queue sizes in the emulator or in the hardware
queues during the hardware experiments, and indicate that
queueing in the hardware network does not significantly
impact the accuracy of Flexplane (§3.4).
Flow completion time. Next we evaluate Flexplane’s ac-
curacy at the application level in terms of flow completion
time (FCT). We run an RPC-based application in which
four clients repeatedly request data from 32 servers. The
size of the requested data is determined by an empirical
workload derived from live traffic in a production data-
center that supports web search (first presented in [8]). It
includes a mixture of flows of different sizes. 53% of the
flows are small flows of less than 100KB, but 37% of the
bytes come from large flows of 10MB or larger. Request
times are chosen by a Poisson process such that the clients
receive a specified load between 10% and 80%. We nor-
malize the FCT for each flow to the average FCT achieved
by a flow of the same size, in an unloaded network, when
flows are requested continuously.

class PriorityScheduler : public Scheduler {

public:

AbstractPkt

*

PriorityScheduler::schedule(uint32_t

port) {

/

*

get the mask of non-empty queues

*

/

uint64_t mask = m_bank->non_empty_qmask(port);

uint64_t q_index;

/

*

bsfq: find the first set bit in mask

*

/

asm("bsfq %1,%0":"=r"(q_index):"r"(mask));

return m_bank->dequeue(port, q_index);

}

private:

PacketQueueBank

*

m_bank;

}

Figure 5: Source code for a priority scheduler in Flexplane over
 64 queues. A PacketQueueBank stores packets between the
calls to enqueue and schedule.

scheme LOC
drop tail queue manager 39

RED queue manager 125
DCTCP queue manager 43

priority queueing scheduler 29
round robin scheduler 40

HULL scheduler 60
pFabric QM, queues, scheduler 251

Table 3: Lines of code (LOC) in the emulator for each resource
management scheme.

We run this application for DropTail and DCTCP, in
Flexplane and in the hardware network. Figure 4 shows
the average normalized FCTs. For both small flows and
large flows, results with Flexplane closely match results
obtained with a hardware network. For loads up to 60%
with both schemes, Flexplane estimates average normal-
ized FCTs of hardware to within 2-8% for small flows
and 3-14% for large flows. Accuracy decreases slightly
for higher loads of 70% and 80%, but remains within 18%
for small flows and 24% for large flows.

5.2 Flexplane Utility
In this section, we evaluate the utility of Flexplane. We
study how easy it is to write new schemes in Flexplane and
provide four examples of how Flexplane can be useful.
Ease of use. To demonstrate the simplicity of implemen-
tation, we show the key portions of the source code for
priority queueing scheduling in Figure 5. Most schemes
require only a few dozen lines of code to implement, as
shown in Table 3. pFabric requires significantly more
code than other schemes because it does not maintain
packets in FIFO order between the enqueue and dequeue
stages; 170 of the 251 lines of code are used to implement
custom queueing.
Parameter tuning. Flexplane enables users to quickly
tune protocol parameters to accommodate different net-
works. For example, the authors of HULL [9] conducted
evaluations using a testbed with 1 Gbits/s links; we use
Flexplane to tune HULL’s parameters to fit our 10 Gbits/s

8



Flexplane	  Enables	  Experimenta0on	  

•  Reproducible	  research	  in	  real	  networks	  

●

●

●●●

●

●

●

0

1

2

3

4

5

6

0.2 0.4 0.6 0.8
Load

N
or

m
al

ize
d 

FC
T

●

DCTCP
HULL
pFabric
TCP−DropTail

(a) (0, 100KB]: Average

●

●

●●

●

●

●

●

0

5

10

15

20

0.2 0.4 0.6 0.8
Load

N
or

m
al

ize
d 

FC
T

(b) (0, 100KB]: 99th percentile

●
●

●
●

●

●
●

●

0

2

4

6

8

0.2 0.4 0.6 0.8
Load

N
or

m
al

ize
d 

FC
T

(c) (10MB, •): Average

Figure 7: Normalized flow completion times for the web search workload, for four different schemes run in Flexplane. Note the
different y axes.

% Change in Completion Time
Coordinate descent Sort

DCTCP +4.4% -4.8%
HULL +29.4% -2.6%

Table 4: Percent change in completion time of two Spark appli-
cations when run with DCTCP or HULL, relative to when run
with DropTail.

run with DCTCP, and 29.4% longer when run with HULL.
This is because this application sends data in a small num-
ber of bulk transfers whose throughput is degraded by
HULL’s, and to a lesser extent DCTCP’s, more aggressive
responses to congestion. Flexplane enabled us to quickly
evaluate the impact of a change in resource management
scheme on these real-world applications. Because these
applications spend much of their time performing com-
putation (>75%), it is not possible to accurately conduct
this experiment in a network simulator today.

Reproducible research. Here we demonstrate how ex-
periments that researchers conducted in simulation in
the past can be conducted on a real network with Flex-
plane, and how results in a real network might differ from
those in simulation. To do so, we recreate an experi-
ment that has been conducted in several other research pa-
pers [10, 12, 24]. We use the same network configuration
and workload as in the flow completion time experiment
in §5.1; this is the same workload used in prior work.

Figure 7 shows the results of running this workload for
DropTail, DCTCP, HULL, and pFabric, in Flexplane, at
loads ranging from 10% to 80%. We present the average
and 99th percentile normalized flow completion time for
small flows, and the average normalized flow completion
time for large flows, as in prior work.

We observe the same general trends as in prior work.
For the small flows, DropTail performs the worst, with
performance degrading significantly at the highest loads
and at the 99th percentile. In contrast, pFabric maintains
good performance for small flows, even at high load and
at the tail. For large flows, DCTCP and DropTail maintain
the best performance, while HULL and pFabric degrade

significantly at loads of 70%-80%. For HULL, this is
because the required bandwidth headroom begins to sig-
nificantly limit large flows. For pFabric, performance
degrades at high load because short queues cause many
packets to be dropped. This may be exacerbated by the
fact that we do not use all TCP modifications at the end-
points, including the probe mode (which is particularly
important at high load).

Our results demonstrate an unexpected phenomenon.
One would expect that under low load (e.g., 10%),
small flows would achieve a normalized FCT close to
1; previous simulation results have corroborated this in-
tuition [10, 24]. In contrast, our results show that the
average normalized FCTs across all schemes begin at
around 2.5, even under the lightest load. These results
obtained in Flexplane agree with those obtained on the
hardware network, for DropTail and DCTCP (Figure 4).

This unexpected behavior is due to the properties of real
endpoint network stacks. In real endpoints, application-
layer latency depends on the rate at which packets are
sent; when packets are sent at a high enough rate, the
latency decreases significantly. For example, in our net-
work, the ping utility reports average ping latencies of
77 µs when pings are sent every 2 ms; this decreases to
14 µs when pings are sent every 50 µs. Because many
of the bytes in this workload belong to large flows, the
number of queries per second is relatively small (513
per second to saturate a 10 Gbits/s NIC). The result is
that, under most loads, packets are not sent at a high
enough rate for small flows to achieve the ultra-low la-
tency achieved when flows are requested continuously;
their normalized FCTs are thus much higher than 1. Large
flows still approach normalized FCTs of 1 because the
FCT is dominated by the transmission time. This behavior
would be hard to capture accurately in simulation, but is
automatically captured with Flexplane.

5.3 Emulator Throughput

The aggregate throughput of the Flexplane emulator de-
termines the size of network and the types of applications

10

•  Experiment	  with	  Spark	  
– Results	  depend	  on	  resource	  management	  scheme	  
and	  applica0on	  


