
Flexplane:	  An	  Experimenta0on	  Pla3orm	  
for	  Resource	  Management	  in	  Datacenters	  

Amy	  Ousterhout,	  Jonathan	  Perry,	  
Hari	  Balakrishnan,	  Petr	  Lapukhov	  



Datacenter	  Networks	  
•  Applica0ons	  have	  diverse	  requirements	  
•  Dozens	  of	  new	  resource	  management	  schemes	  
–  Low	  latency:	  DCTCP	  
– Min	  FCT:	  PDQ,	  RCP,	  pFabric,	  PERC	  
–  Deadlines:	  D3,	  D2TCP	  

•  Difficult	  to	  experiment	  with	  schemes	  in	  real	  
networks	  
–  Requires	  changes	  to	  hardware	  routers	  

	  



Experimenta0on	  with	  Resource	  
Management	  

•  Experimenta0on	  in	  real	  networks	  
–  SoSware	  routers	  -‐	  limited	  throughput	  
–  Programmable	  hardware	  -‐	  limited	  flexibility	  

	  

By	  Altera	  Corpora0on	  -‐	  Altera	  Corpora0on,	  CC	  BY	  3.0	  



Experimenta0on	  with	  Resource	  
Management	  

•  Experimenta0on	  in	  simula0on	  (e.g.,	  ns,	  OMNeT++)	  
–  Does	  not	  accurately	  model	  real	  network	  stacks,	  NICs,	  and	  
distributed	  applica0ons	  

–  Does	  not	  run	  in	  real	  0me	  

	  

No	  exis0ng	  approach	  to	  experimenta0on	  provides	  
accuracy,	  flexibility,	  and	  high	  throughput	  



Our	  Contribu0ons	  
•  Key	  idea:	  whole-‐network	  emula0on	  
•  Flexplane:	  a	  pla3orm	  for	  faithful	  experimenta0on	  
with	  resource	  management	  schemes	  
–  Accurate	  –	  predicts	  behavior	  of	  hardware	  
–  Flexible	  –	  express	  schemes	  in	  C++	  
–  High	  throughput	  –	  761	  Gbits/s	  



Approach:	  Whole-‐Network	  Emula0on	  
Real	  Network	  

class	  MyScheduler	  {…}	  

Emulated	  Network	  

Emulator	   class	  MyAQM	  {…}	  



Abstract	  Packets	  
•  Resource	  management	  schemes	  are	  data-‐
independent	  

•  Concise	  representa0on	  of	  one	  MTU	  
–  Source,	  des0na0on,	  flow,	  ID	  
–  Custom	  per-‐scheme	  fields	  



Emulator	  
•  Real-‐0me	  network	  simulator	  
•  Faster	  than	  standard	  network	  simulators	  
–  Time	  divided	  into	  abstract-‐packet-‐sized	  0meslots	  
–  Omits	  endpoint	  soSware	  

Real	  Network	  

Emulated	  Network	  

Emulator	  



Accuracy	  
•  Goal:	  predict	  behavior	  of	  a	  hardware	  network	  
•  Hardware	  latency:	  unloaded	  delay	  +	  queuing	  delay	  
•  Added	  latency	  of	  Flexplane:	  
–  RTT	  to	  emulator	  
–  Unloaded	  delay	  
–  Queuing	  delay	  
	  	  	  	  in	  real	  network	  

Real	  Network	  

Emulated	  Network	  

Emulator	  



Flexplane	  API	  
•  Decouples	  schemes	  from	  framework	  

incoming	  
packets	  

outgoing	  
packets	  

route	   classify	   enqueue	   schedule	  

Emulator	  

int	  route(AbstractPkt	  *pkt)	  
int	  classify(AbstractPkt	  *pkt,	  int	  port)	  
enqueue(AbstractPkt	  *pkt,	  int	  port,	  int	  queue)	  
AbstractPkt	  *schedule(int	  output_port)	  	  

Emulator	  

int	  route(AbstractPkt	  *pkt)	  
int	  classify(AbstractPkt	  *pkt,	  int	  port)	  
enqueue(AbstractPkt	  *pkt,	  int	  port,	  int	  queue)	  
AbstractPkt	  *schedule(int	  output_port)	  	  

Endpoints	  
prepare_request(sk_buff	  *skb,	  char	  *request_data)	  
prepare_to_send(sk_buff	  *skb,	  char	  *alloca0on_data)	  	  



Mul0core	  Emulator	  Architecture	  
•  Pin	  network	  components	  (routers,	  endpoints)	  to	  
cores	  

•  Communica0on	  via	  FIFO	  queues	  
•  Router	  state	  not	  shared	  across	  cores	  

aggrega0on	  

endpoints	  

ToR	  
CPU	  core	  



Implementa0on	  
•  Emulator	  uses	  Intel	  DPDK	  for	  low-‐latency	  NIC	  access	  
•  Endpoints	  run	  a	  Linux	  qdisc	  
	  



Evalua0on	  
•  Accuracy	  
•  U0lity	  
•  Emulator	  throughput	  
	  



Flexplane	  is	  Accurate	  
•  Bulk	  TCP:	  5	  senders,	  1	  receiver	  
•  Throughput	  9.2-‐9.3	  Gbits/s	  vs.	  9.4	  Gbits/s	  in	  
hardware	  

•  Similar	  queue	  occupancies	  by two. We run DropTail both in Flexplane and on the
hardware switch.

The results in Figure 3 demonstrate that the per-packet
latency overhead of Flexplane is modest. Under the light-
est offered load we measure (10,000 packets/s), the me-
dian latency in Flexplane is 33.8 µs, compared to 14.9 µs
on hardware. As the load increases, the latency in Flex-
plane increases slightly due to the additional load on the
kernel module in the sending endpoint. Flexplane is un-
able to meet the highest offered load (6 Gbits/s), because
of the CPU overhead of the kernel module. Note that state-
of-the-art software routers add latencies of the same order
of magnitude for each hop, even without the added round-
trip time to an off-path emulator: 47.6-66.4 µs [21] for a
CPU-based software router; 30 µs [31] or 140-260 µs [27]
for GPU-based software routers.

Throughput. Next we evaluate accuracy for bulk-transfer
TCP, using network-level metrics: throughput and in-
network queueing. In each experiment, five machines
send TCP traffic at maximum throughput to one receiver.

We compare Flexplane to hardware for three schemes
that our router supports: TCP-cubic/DropTail, TCP-
cubic/RED, and DCTCP. We configure the hardware
router and the emulator using the same parameters for
each scheme. For DropTail we use a static per-port
buffer size of 1024 MTUs. For RED, we use min th=150,
max th=300, max p=0.1, and weight=5. For DCTCP, we
use an ECN-marking threshold of 65 MTUs, as recom-
mended by its designers [10].

Flexplane achieves similar aggregate throughput as the
hardware. All three schemes consistently saturate the
bottleneck link, achieving an aggregate throughput of
9.4 Gbits/s in hardware, compared to 9.2-9.3 Gbits/s in
Flexplane. This 1-2% difference in throughput is due to
bandwidth allocated for abstract packets in Flexplane.

Queueing. During the experiment described above, we
sample the total buffer occupancy in the hardware router
every millisecond, and the emulator logs the occupancy
of each emulated port at the same frequency.

Table 2 shows that Flexplane maintains similar queue
occupancies as the hardware schemes. For DropTail it
maintains high occupancies (close to the max of 1024)
with large variations in occupancy, while for the other two
schemes the occupancies are lower and more consistent.
Flexplane does differ from hardware in that its occupan-
cies tend to be slightly lower and to display more variation.
We believe this is due to the effectively longer RTT in
Flexplane. When the congestion window is reduced, the
pause before sending again is longer in Flexplane, allow-
ing the queues to drain more.

During the Flexplane experiments, the hardware queue
sizes remain small: the mean is 7-10 MTUs and the 95th
percentile is 14-22 MTUs. These numbers are small com-

Median Queue Occupancies
(MTUs)

Hardware Flexplane
DropTail 931 837

RED 138 104
DCTCP 61 51

Table 2: Flexplane achieves similar queue occupancies and
standard deviations in occupancies (s ) as hardware.

pared to the queue sizes in the emulator or in the hardware
queues during the hardware experiments, and indicate that
queueing in the hardware network does not significantly
impact the accuracy of Flexplane (§3.4).
Flow completion time. Next we evaluate Flexplane’s ac-
curacy at the application level in terms of flow completion
time (FCT). We run an RPC-based application in which
four clients repeatedly request data from 32 servers. The
size of the requested data is determined by an empirical
workload derived from live traffic in a production datacen-
ter that supports web search (first presented in [10]). It
includes a mixture of flows of different sizes. 53% of the
flows are small flows of less than 100KB, but 37% of the
bytes come from large flows of 10MB or larger. Request
times are chosen by a Poisson process such that the clients
receive a specified load between 10% and 80%. We nor-
malize the FCT for each flow to the average FCT achieved
by a flow of the same size, in an unloaded network, when
flows are requested continuously.

We run this application for DropTail and DCTCP, in
Flexplane and in the hardware network. Figure 4 shows
the average normalized FCTs. For both small flows and
large flows, results with Flexplane closely match results
obtained with a hardware network. For loads up to 60%
with both schemes, Flexplane estimates average normal-
ized FCTs of hardware to within 2-8% for small flows
and 3-14% for large flows. Accuracy decreases slightly
for higher loads of 70% and 80%, but remains within 18%
for small flows and 24% for large flows.

5.2 Flexplane Utility
In this section, we evaluate the utility of Flexplane. We
study how easy it is to write new schemes in Flexplane and
provide four examples of how Flexplane can be useful.
Ease of use. To demonstrate the simplicity of implemen-
tation, we show the key portions of the source code for
priority queueing scheduling in Figure 5. Most schemes
require only a few dozen lines of code to implement, as
shown in Table 3. pFabric requires significantly more
code than other schemes because it does not maintain
packets in FIFO order between the enqueue and dequeue
stages; 170 of the 251 lines of code are used to implement
custom queueing.
Parameter tuning. Flexplane enables users to quickly
tune protocol parameters to accommodate different net-



●●

●

●

●

●

●

●

0

1

2

3

4

5

6

0.2 0.4 0.6 0.8
Load

Av
er

ag
e 

N
or

m
al

ize
d 

FC
T

●

Flexplane
Hardware

(a) DropTail, (0, 100KB]

●

●

●●

●

●
●●

0

1

2

3

4

5

6

0.2 0.4 0.6 0.8
Load

Av
er

ag
e 

N
or

m
al

ize
d 

FC
T

(b) DCTCP, (0, 100KB]

●

●

●

●
●

●

●

●

0

1

2

3

4

5

6

0.2 0.4 0.6 0.8
Load

Av
er

ag
e 

N
or

m
al

ize
d 

FC
T

(c) DropTail, (10MB, •)

●
●

●

●

●

●

●
●

0

1

2

3

4

5

6

0.2 0.4 0.6 0.8
Load

Av
er

ag
e 

N
or

m
al

ize
d 

FC
T

(d) DCTCP, (10MB, •)

Figure 4: Flexplane closely matches the average normalized flow completion times of hardware for DropTail and DCTCP. The left
two graphs show results for small flow sizes; the right two graphs show results for large flow sizes.

class PriorityScheduler : public Scheduler {

public:

AbstractPkt

*

PriorityScheduler::schedule(uint32_t

port) {

/

*

get the mask of non-empty queues

*

/

uint64_t mask = m_bank->non_empty_qmask(port);

uint64_t q_index;

/

*

bsfq: find the first set bit in mask

*

/

asm("bsfq %1,%0":"=r"(q_index):"r"(mask));

return m_bank->dequeue(port, q_index);

}

private:

PacketQueueBank

*

m_bank;

}

Figure 5: Source code for a priority scheduler in Flexplane over
 64 queues. A PacketQueueBank stores packets between the
calls to enqueue and schedule.

scheme LOC
drop tail queue manager 39

RED queue manager 125
DCTCP queue manager 43

priority queueing scheduler 29
round robin scheduler 40

HULL scheduler 60
pFabric QM, queues, scheduler 251

Table 3: Lines of code (LOC) in the emulator for each resource
management scheme.

works. For example, the authors of HULL [11] conducted
evaluations using a testbed with 1 Gbits/s links; we use
Flexplane to tune HULL’s parameters to fit our 10 Gbits/s
network. We use the recommended phantom queue drain
rate of 95% of the link speed (9.5 Gbits/s). The HULL au-
thors use a 1 KB marking threshold in a 1 Gbits/s network,
and suggest a marking threshold of 3-5 KB for 10 Gbit-
s/s links. We found, however, that throughput degraded
significantly with a 3 KB marking threshold, achieving
only 5 Gbits/s total with four concurrent flows. We there-
fore increased the marking threshold until our achieved
throughput was 92% of the drain rate (this is what [11]
achieves with their parameters); the resulting threshold is
15 KB. Flexplane helped us conduct this parameter search
quickly and effectively.
Evaluating trade-offs. In this example, we demonstrate
how one might use Flexplane to evaluate the performance

●

●

●

● ●

●

●

better

HULL

DropTail

Priority Queueing250

300

350

400

303540455055
Low priority FCT (ms)

H
ig

h 
pr

io
rit

y 
FC

T 
(u

s)

●

●

●

●

●

●

●

DCTCP
DropTail
HULL
pFabric

Priority Queueing
RED
Round Robin

Figure 6: Flexplane enables users to explore trade-offs between
different schemes. Large points show averages over the entire
experiment, faded points show averages over 1s, and ellipses
show one standard deviation. Note the flipped axes.

of a specific application with different resource manage-
ment schemes. We do not argue that any scheme is better
than any other, but instead demonstrate that there are trade-
offs between different schemes (as described in [47]), and
that Flexplane can help users explore these trade-offs.

We use an RPC-based workload and consider the trade-
off that schemes make between performance for short
flows and performance for long flows. In the experiment,
four clients repeatedly request data from 32 servers. 80%
of the requests are short 1.5 KB “high priority” requests,
while the remaining 20% are 10 Mbyte “low priority”
requests. Request times are chosen by a Poisson process
such that the client NICs are receiving at about 60% of
their maximum throughput. We evaluate the schemes
discussed in §5.1, as well as TCP-cubic/per-flow-DRR,
TCP-cubic/priority-queueing, HULL, and pFabric.

Figure 6 shows the trade-off each scheme makes on
this workload. With DropTail, large queues build up in
the network, leading to high flow completion times for the
high-priority requests. However, DropTail senders rarely
cut back their sending rates and therefore achieve good
FCTs for the long requests. At the other end of the spec-
trum, HULL’s phantom queues cause senders to decrease
their sending rates early, leading to unutilized bandwidth
and worse performance for the low priority flows; the
high priority flows achieve relatively good performance
because they encounter little queueing in the network.

●●

●

●

●

●

●

●

0

1

2

3

4

5

6

0.2 0.4 0.6 0.8
Load

Av
er

ag
e 

N
or

m
al

ize
d 

FC
T

●

Flexplane
Hardware

(a) DropTail, (0, 100KB]

●

●

●●

●

●
●●

0

1

2

3

4

5

6

0.2 0.4 0.6 0.8
Load

Av
er

ag
e 

N
or

m
al

ize
d 

FC
T

(b) DCTCP, (0, 100KB]

●

●

●

●
●

●

●

●

0

1

2

3

4

5

6

0.2 0.4 0.6 0.8
Load

Av
er

ag
e 

N
or

m
al

ize
d 

FC
T

(c) DropTail, (10MB, •)

●
●

●

●

●

●

●
●

0

1

2

3

4

5

6

0.2 0.4 0.6 0.8
Load

Av
er

ag
e 

N
or

m
al

ize
d 

FC
T

(d) DCTCP, (10MB, •)

Figure 4: Flexplane closely matches the average normalized flow completion times of hardware for DropTail and DCTCP. The left
two graphs show results for small flow sizes; the right two graphs show results for large flow sizes.

class PriorityScheduler : public Scheduler {

public:

AbstractPkt

*

PriorityScheduler::schedule(uint32_t

port) {

/

*

get the mask of non-empty queues

*

/

uint64_t mask = m_bank->non_empty_qmask(port);

uint64_t q_index;

/

*

bsfq: find the first set bit in mask

*

/

asm("bsfq %1,%0":"=r"(q_index):"r"(mask));

return m_bank->dequeue(port, q_index);

}

private:

PacketQueueBank

*

m_bank;

}

Figure 5: Source code for a priority scheduler in Flexplane over
 64 queues. A PacketQueueBank stores packets between the
calls to enqueue and schedule.

scheme LOC
drop tail queue manager 39

RED queue manager 125
DCTCP queue manager 43

priority queueing scheduler 29
round robin scheduler 40

HULL scheduler 60
pFabric QM, queues, scheduler 251

Table 3: Lines of code (LOC) in the emulator for each resource
management scheme.

works. For example, the authors of HULL [11] conducted
evaluations using a testbed with 1 Gbits/s links; we use
Flexplane to tune HULL’s parameters to fit our 10 Gbits/s
network. We use the recommended phantom queue drain
rate of 95% of the link speed (9.5 Gbits/s). The HULL au-
thors use a 1 KB marking threshold in a 1 Gbits/s network,
and suggest a marking threshold of 3-5 KB for 10 Gbit-
s/s links. We found, however, that throughput degraded
significantly with a 3 KB marking threshold, achieving
only 5 Gbits/s total with four concurrent flows. We there-
fore increased the marking threshold until our achieved
throughput was 92% of the drain rate (this is what [11]
achieves with their parameters); the resulting threshold is
15 KB. Flexplane helped us conduct this parameter search
quickly and effectively.
Evaluating trade-offs. In this example, we demonstrate
how one might use Flexplane to evaluate the performance

●

●

●

● ●

●

●

better

HULL

DropTail

Priority Queueing250

300

350

400

303540455055
Low priority FCT (ms)

H
ig

h 
pr

io
rit

y 
FC

T 
(u

s)

●

●

●

●

●

●

●

DCTCP
DropTail
HULL
pFabric

Priority Queueing
RED
Round Robin

Figure 6: Flexplane enables users to explore trade-offs between
different schemes. Large points show averages over the entire
experiment, faded points show averages over 1s, and ellipses
show one standard deviation. Note the flipped axes.

of a specific application with different resource manage-
ment schemes. We do not argue that any scheme is better
than any other, but instead demonstrate that there are trade-
offs between different schemes (as described in [47]), and
that Flexplane can help users explore these trade-offs.

We use an RPC-based workload and consider the trade-
off that schemes make between performance for short
flows and performance for long flows. In the experiment,
four clients repeatedly request data from 32 servers. 80%
of the requests are short 1.5 KB “high priority” requests,
while the remaining 20% are 10 Mbyte “low priority”
requests. Request times are chosen by a Poisson process
such that the client NICs are receiving at about 60% of
their maximum throughput. We evaluate the schemes
discussed in §5.1, as well as TCP-cubic/per-flow-DRR,
TCP-cubic/priority-queueing, HULL, and pFabric.

Figure 6 shows the trade-off each scheme makes on
this workload. With DropTail, large queues build up in
the network, leading to high flow completion times for the
high-priority requests. However, DropTail senders rarely
cut back their sending rates and therefore achieve good
FCTs for the long requests. At the other end of the spec-
trum, HULL’s phantom queues cause senders to decrease
their sending rates early, leading to unutilized bandwidth
and worse performance for the low priority flows; the
high priority flows achieve relatively good performance
because they encounter little queueing in the network.

DCTCP	  
(0,	  100KB]	  

DCTCP	  
(10MB,	  ∞)	  

0

1

2

3

4

5

6

0.2 0.4 0.6 0.8
Load

Av
er

ag
e 

N
or

m
al

ize
d 

FC
T

●

Flexplane
Hardware

•  RPC	  web	  search	  workload	  
	  
	  
	  
	  
•  Accurate	  to	  within	  2-‐14%	  for	  loads	  up	  to	  60%	  
•  Observe	  behavior	  not	  visible	  in	  simula0ons	  

Flexplane	  is	  Accurate	  



Queue Occupancies (MTUs)
Hardware Flexplane

median s median s
DropTail 931 73.7 837 98.6

RED 138 12.9 104 32.5
DCTCP 61 4.9 51 13.0

Table 2: Flexplane achieves similar queue occupancies and
standard deviations in occupancies (s ) as hardware.

use an ECN-marking threshold of 65 MTUs, as recom-
mended by its designers [8].

Flexplane achieves similar aggregate throughput as the
hardware. All three schemes consistently saturate the
bottleneck link, achieving an aggregate throughput of
9.4 Gbits/s in hardware, compared to 9.2-9.3 Gbits/s in
Flexplane. This 1-2% difference in throughput is due to
bandwidth allocated for abstract packets in Flexplane.
Queueing. During the experiment described above, we
sample the total buffer occupancy in the hardware router
every millisecond, and the emulator logs the occupancy
of each emulated port at the same frequency.

Table 2 shows that Flexplane maintains similar queue
occupancies as the hardware schemes. For DropTail it
maintains high occupancies (close to the max of 1024)
with large variations in occupancy, while for the other two
schemes the occupancies are lower and more consistent.
Flexplane does differ from hardware in that its occupan-
cies tend to be slightly lower and to display more variation.
We believe this is due to the effectively longer RTT in
Flexplane. When the congestion window is reduced, the
pause before sending again is longer in Flexplane, allow-
ing the queues to drain more.

During the Flexplane experiments, the hardware queue
sizes remain small: the mean is 7-10 MTUs and the 95th
percentile is 14-22 MTUs. These numbers are small com-
pared to the queue sizes in the emulator or in the hardware
queues during the hardware experiments, and indicate that
queueing in the hardware network does not significantly
impact the accuracy of Flexplane (§3.4).
Flow completion time. Next we evaluate Flexplane’s ac-
curacy at the application level in terms of flow completion
time (FCT). We run an RPC-based application in which
four clients repeatedly request data from 32 servers. The
size of the requested data is determined by an empirical
workload derived from live traffic in a production data-
center that supports web search (first presented in [8]). It
includes a mixture of flows of different sizes. 53% of the
flows are small flows of less than 100KB, but 37% of the
bytes come from large flows of 10MB or larger. Request
times are chosen by a Poisson process such that the clients
receive a specified load between 10% and 80%. We nor-
malize the FCT for each flow to the average FCT achieved
by a flow of the same size, in an unloaded network, when
flows are requested continuously.

class PriorityScheduler : public Scheduler {

public:

AbstractPkt

*

PriorityScheduler::schedule(uint32_t

port) {

/

*

get the mask of non-empty queues

*

/

uint64_t mask = m_bank->non_empty_qmask(port);

uint64_t q_index;

/

*

bsfq: find the first set bit in mask

*

/

asm("bsfq %1,%0":"=r"(q_index):"r"(mask));

return m_bank->dequeue(port, q_index);

}

private:

PacketQueueBank

*

m_bank;

}

Figure 5: Source code for a priority scheduler in Flexplane over
 64 queues. A PacketQueueBank stores packets between the
calls to enqueue and schedule.

scheme LOC
drop tail queue manager 39

RED queue manager 125
DCTCP queue manager 43

priority queueing scheduler 29
round robin scheduler 40

HULL scheduler 60
pFabric QM, queues, scheduler 251

Table 3: Lines of code (LOC) in the emulator for each resource
management scheme.

We run this application for DropTail and DCTCP, in
Flexplane and in the hardware network. Figure 4 shows
the average normalized FCTs. For both small flows and
large flows, results with Flexplane closely match results
obtained with a hardware network. For loads up to 60%
with both schemes, Flexplane estimates average normal-
ized FCTs of hardware to within 2-8% for small flows
and 3-14% for large flows. Accuracy decreases slightly
for higher loads of 70% and 80%, but remains within 18%
for small flows and 24% for large flows.

5.2 Flexplane Utility
In this section, we evaluate the utility of Flexplane. We
study how easy it is to write new schemes in Flexplane and
provide four examples of how Flexplane can be useful.
Ease of use. To demonstrate the simplicity of implemen-
tation, we show the key portions of the source code for
priority queueing scheduling in Figure 5. Most schemes
require only a few dozen lines of code to implement, as
shown in Table 3. pFabric requires significantly more
code than other schemes because it does not maintain
packets in FIFO order between the enqueue and dequeue
stages; 170 of the 251 lines of code are used to implement
custom queueing.
Parameter tuning. Flexplane enables users to quickly
tune protocol parameters to accommodate different net-
works. For example, the authors of HULL [9] conducted
evaluations using a testbed with 1 Gbits/s links; we use
Flexplane to tune HULL’s parameters to fit our 10 Gbits/s

8

Flexplane	  is	  Easy	  to	  Use	  
•  Implemented	  several	  schemes	  in	  dozens	  of	  lines	  of	  
code	  



Flexplane	  Enables	  Experimenta0on	  
•  Evalua0ng	  trade-‐offs	  between	  resource	  management	  
schemes	  

●

●

●

● ●

●

●

better

HULL

DropTail

Priority Queueing250

300

350

400

303540455055
Low priority FCT (ms)

H
ig

h 
pr

io
rit

y 
FC

T 
(u

s)

●

●

●

●

●

●

●

DCTCP
DropTail
HULL
pFabric

Priority Queueing
RED
Round Robin



Flexplane	  Enables	  Experimenta0on	  
•  Experiment	  with	  real	  distributed	  applica0ons	  such	  as	  
Spark	  

●

●

●●●

●

●

●

0

1

2

3

4

5

6

0.2 0.4 0.6 0.8
Load

N
or

m
al

ize
d 

FC
T

●

DCTCP
HULL
pFabric
TCP−DropTail

(a) (0, 100KB]: Average

●

●

●●

●

●

●

●

0

5

10

15

20

0.2 0.4 0.6 0.8
Load

N
or

m
al

ize
d 

FC
T

(b) (0, 100KB]: 99th percentile

●
●

●
●

●

●
●

●

0

2

4

6

8

0.2 0.4 0.6 0.8
Load

N
or

m
al

ize
d 

FC
T

(c) (10MB, •): Average

Figure 7: Normalized flow completion times for the web search workload, for four different schemes run in Flexplane. Note the
different y axes.

Priority queueing performs well on this simple workload,
achieving good performance for both flow types. A net-
work operator could use these results to determine what
scheme to run in their network, depending on how they
value performance of high priority flows relative to low
priority flows.

Real applications. In addition to enabling experimenta-
tion with network-bound workloads like the one above,
Flexplane enables users to evaluate the performance im-
pact of different resource management schemes on real
applications whose performance depends on both net-
work and computational resources. We consider two ap-
plications that perform distributed computations using
Spark [1]. The first uses block coordinate descent [2]
to compute the optimal solution to a least squares prob-
lem; this is a staple of many machine learning tasks. The
second performs an in-memory sort [4]. For this exper-
iment, we use a small cluster of 9 machines (1 master
and 8 workers), each with 8 cores, connected via a single
switch with 1 Gbit/s links. We use Flexplane to run each
application with DropTail, DCTCP, and HULL.

Table 4 shows that different Spark applications are
affected in different ways by a change in resource man-
agement scheme. The sort application, which includes
multiple waves of small tasks and small data transfers,
shows small improvements in completion time, relative to
DropTail, when run with DCTCP or HULL. In contrast,
coordinate descent takes 4.4% longer to complete when
run with DCTCP, and 29.4% longer when run with HULL.
This is because this application sends data in a small num-
ber of bulk transfers whose throughput is degraded by
HULL’s, and to a lesser extent DCTCP’s, more aggressive
responses to congestion. Flexplane enabled us to quickly
evaluate the impact of a change in resource management
scheme on these real-world applications. Because these
applications spend much of their time performing com-
putation (>75%), it is not possible to accurately conduct
this experiment in a network simulator today.

Reproducible research. Here we demonstrate how ex-

% Change in Completion Time
Relative to DropTail

Coordinate descent Sort
DCTCP +4.4% -4.8%
HULL +29.4% -2.6%

Table 4: Percent change in completion time of two Spark appli-
cations when run with DCTCP or HULL, relative to when run
with DropTail.

periments that researchers conducted in simulation in
the past can be conducted on a real network with Flex-
plane, and how results in a real network might differ from
those in simulation. To do so, we recreate an experi-
ment that has been conducted in several other research pa-
pers [12, 14, 26]. We use the same network configuration
and workload as in the flow completion time experiment
in §5.1; this is the same workload used in prior work.

Figure 7 shows the results of running this workload for
DropTail, DCTCP, HULL, and pFabric, in Flexplane, at
loads ranging from 10% to 80%. We present the average
and 99th percentile normalized flow completion time for
small flows, and the average normalized flow completion
time for large flows, as in prior work.

We observe the same general trends as in prior work.
For the small flows, DropTail performs the worst, with
performance degrading significantly at the highest loads
and at the 99th percentile. In contrast, pFabric maintains
good performance for small flows, even at high load and
at the tail. For large flows, DCTCP and DropTail maintain
the best performance, while HULL and pFabric degrade
significantly at loads of 70%-80%. For HULL, this is
because the required bandwidth headroom begins to sig-
nificantly limit large flows. For pFabric, performance
degrades at high load because short queues cause many
packets to be dropped. This may be exacerbated by the
fact that we do not use all TCP modifications at the end-
points, including the probe mode (which is particularly
important at high load).

Our results demonstrate an unexpected phenomenon.
One would expect that under low load (e.g., 10%),

•  Performance	  depends	  on	  network	  and	  CPU	  



0

100

200

300

400

500

600

700

800

900

0 1 2 3 4 5 6 7 8
Emulation cores

R
ou

te
r t

hr
ou

gh
pu

t (
G

bi
ts

/s
)

racks connected with Agg

Emulator	  Throughput	  
•  Emulator	  provides	  761	  Gbits/s	  of	  aggregate	  
throughput	  with	  10	  total	  cores	  

	  

●

0

100

200

300

400

500

600

700

800

900

0 1 2 3 4 5 6 7 8
Emulation cores

R
ou

te
r t

hr
ou

gh
pu

t (
G

bi
ts

/s
)

●

racks connected with Agg

isolated racks

●

●

●

●

●

●

●

●

0

100

200

300

400

500

600

700

800

900

0 1 2 3 4 5 6 7 8
Emulation cores

R
ou

te
r t

hr
ou

gh
pu

t (
G

bi
ts

/s
)

●

racks connected with Agg

isolated racks

•  81x	  as	  much	  throughput	  per	  clock	  cycle	  as	  
RouteBricks	  

	  



Flexplane:	  an	  Experimenta0on	  
Pla3orm	  

•  Whole-‐network	  emula0on	  
•  Flexplane:	  a	  pla3orm	  for	  faithful	  experimenta0on	  
with	  resource	  management	  schemes	  
–  Accuracy,	  flexibility,	  and	  high	  throughput	  

hqps://github.com/aousterh/flexplane	  


