
Flexplane:	
  An	
  Experimenta0on	
  Pla3orm	
  
for	
  Resource	
  Management	
  in	
  Datacenters	
  

Amy	
  Ousterhout,	
  Jonathan	
  Perry,	
  
Hari	
  Balakrishnan,	
  Petr	
  Lapukhov	
  



Datacenter	
  Networks	
  
•  Applica0ons	
  have	
  diverse	
  requirements	
  
•  Dozens	
  of	
  new	
  resource	
  management	
  schemes	
  
–  Low	
  latency:	
  DCTCP	
  
– Min	
  FCT:	
  PDQ,	
  RCP,	
  pFabric,	
  PERC	
  
–  Deadlines:	
  D3,	
  D2TCP	
  

•  Difficult	
  to	
  experiment	
  with	
  schemes	
  in	
  real	
  
networks	
  
–  Requires	
  changes	
  to	
  hardware	
  routers	
  

	
  



Experimenta0on	
  with	
  Resource	
  
Management	
  

•  Experimenta0on	
  in	
  real	
  networks	
  
–  SoSware	
  routers	
  -­‐	
  limited	
  throughput	
  
–  Programmable	
  hardware	
  -­‐	
  limited	
  flexibility	
  

	
  

By	
  Altera	
  Corpora0on	
  -­‐	
  Altera	
  Corpora0on,	
  CC	
  BY	
  3.0	
  



Experimenta0on	
  with	
  Resource	
  
Management	
  

•  Experimenta0on	
  in	
  simula0on	
  (e.g.,	
  ns,	
  OMNeT++)	
  
–  Does	
  not	
  accurately	
  model	
  real	
  network	
  stacks,	
  NICs,	
  and	
  
distributed	
  applica0ons	
  

–  Does	
  not	
  run	
  in	
  real	
  0me	
  

	
  

No	
  exis0ng	
  approach	
  to	
  experimenta0on	
  provides	
  
accuracy,	
  flexibility,	
  and	
  high	
  throughput	
  



Our	
  Contribu0ons	
  
•  Key	
  idea:	
  whole-­‐network	
  emula0on	
  
•  Flexplane:	
  a	
  pla3orm	
  for	
  faithful	
  experimenta0on	
  
with	
  resource	
  management	
  schemes	
  
–  Accurate	
  –	
  predicts	
  behavior	
  of	
  hardware	
  
–  Flexible	
  –	
  express	
  schemes	
  in	
  C++	
  
–  High	
  throughput	
  –	
  761	
  Gbits/s	
  



Approach:	
  Whole-­‐Network	
  Emula0on	
  
Real	
  Network	
  

class	
  MyScheduler	
  {…}	
  

Emulated	
  Network	
  

Emulator	
   class	
  MyAQM	
  {…}	
  



Abstract	
  Packets	
  
•  Resource	
  management	
  schemes	
  are	
  data-­‐
independent	
  

•  Concise	
  representa0on	
  of	
  one	
  MTU	
  
–  Source,	
  des0na0on,	
  flow,	
  ID	
  
–  Custom	
  per-­‐scheme	
  fields	
  



Emulator	
  
•  Real-­‐0me	
  network	
  simulator	
  
•  Faster	
  than	
  standard	
  network	
  simulators	
  
–  Time	
  divided	
  into	
  abstract-­‐packet-­‐sized	
  0meslots	
  
–  Omits	
  endpoint	
  soSware	
  

Real	
  Network	
  

Emulated	
  Network	
  

Emulator	
  



Accuracy	
  
•  Goal:	
  predict	
  behavior	
  of	
  a	
  hardware	
  network	
  
•  Hardware	
  latency:	
  unloaded	
  delay	
  +	
  queuing	
  delay	
  
•  Added	
  latency	
  of	
  Flexplane:	
  
–  RTT	
  to	
  emulator	
  
–  Unloaded	
  delay	
  
–  Queuing	
  delay	
  
	
  	
  	
  	
  in	
  real	
  network	
  

Real	
  Network	
  

Emulated	
  Network	
  

Emulator	
  



Flexplane	
  API	
  
•  Decouples	
  schemes	
  from	
  framework	
  

incoming	
  
packets	
  

outgoing	
  
packets	
  

route	
   classify	
   enqueue	
   schedule	
  

Emulator	
  

int	
  route(AbstractPkt	
  *pkt)	
  
int	
  classify(AbstractPkt	
  *pkt,	
  int	
  port)	
  
enqueue(AbstractPkt	
  *pkt,	
  int	
  port,	
  int	
  queue)	
  
AbstractPkt	
  *schedule(int	
  output_port)	
  	
  

Emulator	
  

int	
  route(AbstractPkt	
  *pkt)	
  
int	
  classify(AbstractPkt	
  *pkt,	
  int	
  port)	
  
enqueue(AbstractPkt	
  *pkt,	
  int	
  port,	
  int	
  queue)	
  
AbstractPkt	
  *schedule(int	
  output_port)	
  	
  

Endpoints	
  
prepare_request(sk_buff	
  *skb,	
  char	
  *request_data)	
  
prepare_to_send(sk_buff	
  *skb,	
  char	
  *alloca0on_data)	
  	
  



Mul0core	
  Emulator	
  Architecture	
  
•  Pin	
  network	
  components	
  (routers,	
  endpoints)	
  to	
  
cores	
  

•  Communica0on	
  via	
  FIFO	
  queues	
  
•  Router	
  state	
  not	
  shared	
  across	
  cores	
  

aggrega0on	
  

endpoints	
  

ToR	
  
CPU	
  core	
  



Implementa0on	
  
•  Emulator	
  uses	
  Intel	
  DPDK	
  for	
  low-­‐latency	
  NIC	
  access	
  
•  Endpoints	
  run	
  a	
  Linux	
  qdisc	
  
	
  



Evalua0on	
  
•  Accuracy	
  
•  U0lity	
  
•  Emulator	
  throughput	
  
	
  



Flexplane	
  is	
  Accurate	
  
•  Bulk	
  TCP:	
  5	
  senders,	
  1	
  receiver	
  
•  Throughput	
  9.2-­‐9.3	
  Gbits/s	
  vs.	
  9.4	
  Gbits/s	
  in	
  
hardware	
  

•  Similar	
  queue	
  occupancies	
  by two. We run DropTail both in Flexplane and on the
hardware switch.

The results in Figure 3 demonstrate that the per-packet
latency overhead of Flexplane is modest. Under the light-
est offered load we measure (10,000 packets/s), the me-
dian latency in Flexplane is 33.8 µs, compared to 14.9 µs
on hardware. As the load increases, the latency in Flex-
plane increases slightly due to the additional load on the
kernel module in the sending endpoint. Flexplane is un-
able to meet the highest offered load (6 Gbits/s), because
of the CPU overhead of the kernel module. Note that state-
of-the-art software routers add latencies of the same order
of magnitude for each hop, even without the added round-
trip time to an off-path emulator: 47.6-66.4 µs [21] for a
CPU-based software router; 30 µs [31] or 140-260 µs [27]
for GPU-based software routers.

Throughput. Next we evaluate accuracy for bulk-transfer
TCP, using network-level metrics: throughput and in-
network queueing. In each experiment, five machines
send TCP traffic at maximum throughput to one receiver.

We compare Flexplane to hardware for three schemes
that our router supports: TCP-cubic/DropTail, TCP-
cubic/RED, and DCTCP. We configure the hardware
router and the emulator using the same parameters for
each scheme. For DropTail we use a static per-port
buffer size of 1024 MTUs. For RED, we use min th=150,
max th=300, max p=0.1, and weight=5. For DCTCP, we
use an ECN-marking threshold of 65 MTUs, as recom-
mended by its designers [10].

Flexplane achieves similar aggregate throughput as the
hardware. All three schemes consistently saturate the
bottleneck link, achieving an aggregate throughput of
9.4 Gbits/s in hardware, compared to 9.2-9.3 Gbits/s in
Flexplane. This 1-2% difference in throughput is due to
bandwidth allocated for abstract packets in Flexplane.

Queueing. During the experiment described above, we
sample the total buffer occupancy in the hardware router
every millisecond, and the emulator logs the occupancy
of each emulated port at the same frequency.

Table 2 shows that Flexplane maintains similar queue
occupancies as the hardware schemes. For DropTail it
maintains high occupancies (close to the max of 1024)
with large variations in occupancy, while for the other two
schemes the occupancies are lower and more consistent.
Flexplane does differ from hardware in that its occupan-
cies tend to be slightly lower and to display more variation.
We believe this is due to the effectively longer RTT in
Flexplane. When the congestion window is reduced, the
pause before sending again is longer in Flexplane, allow-
ing the queues to drain more.

During the Flexplane experiments, the hardware queue
sizes remain small: the mean is 7-10 MTUs and the 95th
percentile is 14-22 MTUs. These numbers are small com-

Median Queue Occupancies
(MTUs)

Hardware Flexplane
DropTail 931 837

RED 138 104
DCTCP 61 51

Table 2: Flexplane achieves similar queue occupancies and
standard deviations in occupancies (s ) as hardware.

pared to the queue sizes in the emulator or in the hardware
queues during the hardware experiments, and indicate that
queueing in the hardware network does not significantly
impact the accuracy of Flexplane (§3.4).
Flow completion time. Next we evaluate Flexplane’s ac-
curacy at the application level in terms of flow completion
time (FCT). We run an RPC-based application in which
four clients repeatedly request data from 32 servers. The
size of the requested data is determined by an empirical
workload derived from live traffic in a production datacen-
ter that supports web search (first presented in [10]). It
includes a mixture of flows of different sizes. 53% of the
flows are small flows of less than 100KB, but 37% of the
bytes come from large flows of 10MB or larger. Request
times are chosen by a Poisson process such that the clients
receive a specified load between 10% and 80%. We nor-
malize the FCT for each flow to the average FCT achieved
by a flow of the same size, in an unloaded network, when
flows are requested continuously.

We run this application for DropTail and DCTCP, in
Flexplane and in the hardware network. Figure 4 shows
the average normalized FCTs. For both small flows and
large flows, results with Flexplane closely match results
obtained with a hardware network. For loads up to 60%
with both schemes, Flexplane estimates average normal-
ized FCTs of hardware to within 2-8% for small flows
and 3-14% for large flows. Accuracy decreases slightly
for higher loads of 70% and 80%, but remains within 18%
for small flows and 24% for large flows.

5.2 Flexplane Utility
In this section, we evaluate the utility of Flexplane. We
study how easy it is to write new schemes in Flexplane and
provide four examples of how Flexplane can be useful.
Ease of use. To demonstrate the simplicity of implemen-
tation, we show the key portions of the source code for
priority queueing scheduling in Figure 5. Most schemes
require only a few dozen lines of code to implement, as
shown in Table 3. pFabric requires significantly more
code than other schemes because it does not maintain
packets in FIFO order between the enqueue and dequeue
stages; 170 of the 251 lines of code are used to implement
custom queueing.
Parameter tuning. Flexplane enables users to quickly
tune protocol parameters to accommodate different net-



●●

●

●

●

●

●

●

0

1

2

3

4

5

6

0.2 0.4 0.6 0.8
Load

Av
er

ag
e 

N
or

m
al

ize
d 

FC
T

●

Flexplane
Hardware

(a) DropTail, (0, 100KB]

●

●

●●

●

●
●●

0

1

2

3

4

5

6

0.2 0.4 0.6 0.8
Load

Av
er

ag
e 

N
or

m
al

ize
d 

FC
T

(b) DCTCP, (0, 100KB]

●

●

●

●
●

●

●

●

0

1

2

3

4

5

6

0.2 0.4 0.6 0.8
Load

Av
er

ag
e 

N
or

m
al

ize
d 

FC
T

(c) DropTail, (10MB, •)

●
●

●

●

●

●

●
●

0

1

2

3

4

5

6

0.2 0.4 0.6 0.8
Load

Av
er

ag
e 

N
or

m
al

ize
d 

FC
T

(d) DCTCP, (10MB, •)

Figure 4: Flexplane closely matches the average normalized flow completion times of hardware for DropTail and DCTCP. The left
two graphs show results for small flow sizes; the right two graphs show results for large flow sizes.

class PriorityScheduler : public Scheduler {

public:

AbstractPkt

*

PriorityScheduler::schedule(uint32_t

port) {

/

*

get the mask of non-empty queues

*

/

uint64_t mask = m_bank->non_empty_qmask(port);

uint64_t q_index;

/

*

bsfq: find the first set bit in mask

*

/

asm("bsfq %1,%0":"=r"(q_index):"r"(mask));

return m_bank->dequeue(port, q_index);

}

private:

PacketQueueBank

*

m_bank;

}

Figure 5: Source code for a priority scheduler in Flexplane over
 64 queues. A PacketQueueBank stores packets between the
calls to enqueue and schedule.

scheme LOC
drop tail queue manager 39

RED queue manager 125
DCTCP queue manager 43

priority queueing scheduler 29
round robin scheduler 40

HULL scheduler 60
pFabric QM, queues, scheduler 251

Table 3: Lines of code (LOC) in the emulator for each resource
management scheme.

works. For example, the authors of HULL [11] conducted
evaluations using a testbed with 1 Gbits/s links; we use
Flexplane to tune HULL’s parameters to fit our 10 Gbits/s
network. We use the recommended phantom queue drain
rate of 95% of the link speed (9.5 Gbits/s). The HULL au-
thors use a 1 KB marking threshold in a 1 Gbits/s network,
and suggest a marking threshold of 3-5 KB for 10 Gbit-
s/s links. We found, however, that throughput degraded
significantly with a 3 KB marking threshold, achieving
only 5 Gbits/s total with four concurrent flows. We there-
fore increased the marking threshold until our achieved
throughput was 92% of the drain rate (this is what [11]
achieves with their parameters); the resulting threshold is
15 KB. Flexplane helped us conduct this parameter search
quickly and effectively.
Evaluating trade-offs. In this example, we demonstrate
how one might use Flexplane to evaluate the performance

●

●

●

● ●

●

●

better

HULL

DropTail

Priority Queueing250

300

350

400

303540455055
Low priority FCT (ms)

H
ig

h 
pr

io
rit

y 
FC

T 
(u

s)

●

●

●

●

●

●

●

DCTCP
DropTail
HULL
pFabric

Priority Queueing
RED
Round Robin

Figure 6: Flexplane enables users to explore trade-offs between
different schemes. Large points show averages over the entire
experiment, faded points show averages over 1s, and ellipses
show one standard deviation. Note the flipped axes.

of a specific application with different resource manage-
ment schemes. We do not argue that any scheme is better
than any other, but instead demonstrate that there are trade-
offs between different schemes (as described in [47]), and
that Flexplane can help users explore these trade-offs.

We use an RPC-based workload and consider the trade-
off that schemes make between performance for short
flows and performance for long flows. In the experiment,
four clients repeatedly request data from 32 servers. 80%
of the requests are short 1.5 KB “high priority” requests,
while the remaining 20% are 10 Mbyte “low priority”
requests. Request times are chosen by a Poisson process
such that the client NICs are receiving at about 60% of
their maximum throughput. We evaluate the schemes
discussed in §5.1, as well as TCP-cubic/per-flow-DRR,
TCP-cubic/priority-queueing, HULL, and pFabric.

Figure 6 shows the trade-off each scheme makes on
this workload. With DropTail, large queues build up in
the network, leading to high flow completion times for the
high-priority requests. However, DropTail senders rarely
cut back their sending rates and therefore achieve good
FCTs for the long requests. At the other end of the spec-
trum, HULL’s phantom queues cause senders to decrease
their sending rates early, leading to unutilized bandwidth
and worse performance for the low priority flows; the
high priority flows achieve relatively good performance
because they encounter little queueing in the network.

●●

●

●

●

●

●

●

0

1

2

3

4

5

6

0.2 0.4 0.6 0.8
Load

Av
er

ag
e 

N
or

m
al

ize
d 

FC
T

●

Flexplane
Hardware

(a) DropTail, (0, 100KB]

●

●

●●

●

●
●●

0

1

2

3

4

5

6

0.2 0.4 0.6 0.8
Load

Av
er

ag
e 

N
or

m
al

ize
d 

FC
T

(b) DCTCP, (0, 100KB]

●

●

●

●
●

●

●

●

0

1

2

3

4

5

6

0.2 0.4 0.6 0.8
Load

Av
er

ag
e 

N
or

m
al

ize
d 

FC
T

(c) DropTail, (10MB, •)

●
●

●

●

●

●

●
●

0

1

2

3

4

5

6

0.2 0.4 0.6 0.8
Load

Av
er

ag
e 

N
or

m
al

ize
d 

FC
T

(d) DCTCP, (10MB, •)

Figure 4: Flexplane closely matches the average normalized flow completion times of hardware for DropTail and DCTCP. The left
two graphs show results for small flow sizes; the right two graphs show results for large flow sizes.

class PriorityScheduler : public Scheduler {

public:

AbstractPkt

*

PriorityScheduler::schedule(uint32_t

port) {

/

*

get the mask of non-empty queues

*

/

uint64_t mask = m_bank->non_empty_qmask(port);

uint64_t q_index;

/

*

bsfq: find the first set bit in mask

*

/

asm("bsfq %1,%0":"=r"(q_index):"r"(mask));

return m_bank->dequeue(port, q_index);

}

private:

PacketQueueBank

*

m_bank;

}

Figure 5: Source code for a priority scheduler in Flexplane over
 64 queues. A PacketQueueBank stores packets between the
calls to enqueue and schedule.

scheme LOC
drop tail queue manager 39

RED queue manager 125
DCTCP queue manager 43

priority queueing scheduler 29
round robin scheduler 40

HULL scheduler 60
pFabric QM, queues, scheduler 251

Table 3: Lines of code (LOC) in the emulator for each resource
management scheme.

works. For example, the authors of HULL [11] conducted
evaluations using a testbed with 1 Gbits/s links; we use
Flexplane to tune HULL’s parameters to fit our 10 Gbits/s
network. We use the recommended phantom queue drain
rate of 95% of the link speed (9.5 Gbits/s). The HULL au-
thors use a 1 KB marking threshold in a 1 Gbits/s network,
and suggest a marking threshold of 3-5 KB for 10 Gbit-
s/s links. We found, however, that throughput degraded
significantly with a 3 KB marking threshold, achieving
only 5 Gbits/s total with four concurrent flows. We there-
fore increased the marking threshold until our achieved
throughput was 92% of the drain rate (this is what [11]
achieves with their parameters); the resulting threshold is
15 KB. Flexplane helped us conduct this parameter search
quickly and effectively.
Evaluating trade-offs. In this example, we demonstrate
how one might use Flexplane to evaluate the performance

●

●

●

● ●

●

●

better

HULL

DropTail

Priority Queueing250

300

350

400

303540455055
Low priority FCT (ms)

H
ig

h 
pr

io
rit

y 
FC

T 
(u

s)

●

●

●

●

●

●

●

DCTCP
DropTail
HULL
pFabric

Priority Queueing
RED
Round Robin

Figure 6: Flexplane enables users to explore trade-offs between
different schemes. Large points show averages over the entire
experiment, faded points show averages over 1s, and ellipses
show one standard deviation. Note the flipped axes.

of a specific application with different resource manage-
ment schemes. We do not argue that any scheme is better
than any other, but instead demonstrate that there are trade-
offs between different schemes (as described in [47]), and
that Flexplane can help users explore these trade-offs.

We use an RPC-based workload and consider the trade-
off that schemes make between performance for short
flows and performance for long flows. In the experiment,
four clients repeatedly request data from 32 servers. 80%
of the requests are short 1.5 KB “high priority” requests,
while the remaining 20% are 10 Mbyte “low priority”
requests. Request times are chosen by a Poisson process
such that the client NICs are receiving at about 60% of
their maximum throughput. We evaluate the schemes
discussed in §5.1, as well as TCP-cubic/per-flow-DRR,
TCP-cubic/priority-queueing, HULL, and pFabric.

Figure 6 shows the trade-off each scheme makes on
this workload. With DropTail, large queues build up in
the network, leading to high flow completion times for the
high-priority requests. However, DropTail senders rarely
cut back their sending rates and therefore achieve good
FCTs for the long requests. At the other end of the spec-
trum, HULL’s phantom queues cause senders to decrease
their sending rates early, leading to unutilized bandwidth
and worse performance for the low priority flows; the
high priority flows achieve relatively good performance
because they encounter little queueing in the network.

DCTCP	
  
(0,	
  100KB]	
  

DCTCP	
  
(10MB,	
  ∞)	
  

0

1

2

3

4

5

6

0.2 0.4 0.6 0.8
Load

Av
er

ag
e 

N
or

m
al

ize
d 

FC
T

●

Flexplane
Hardware

•  RPC	
  web	
  search	
  workload	
  
	
  
	
  
	
  
	
  
•  Accurate	
  to	
  within	
  2-­‐14%	
  for	
  loads	
  up	
  to	
  60%	
  
•  Observe	
  behavior	
  not	
  visible	
  in	
  simula0ons	
  

Flexplane	
  is	
  Accurate	
  



Queue Occupancies (MTUs)
Hardware Flexplane

median s median s
DropTail 931 73.7 837 98.6

RED 138 12.9 104 32.5
DCTCP 61 4.9 51 13.0

Table 2: Flexplane achieves similar queue occupancies and
standard deviations in occupancies (s ) as hardware.

use an ECN-marking threshold of 65 MTUs, as recom-
mended by its designers [8].

Flexplane achieves similar aggregate throughput as the
hardware. All three schemes consistently saturate the
bottleneck link, achieving an aggregate throughput of
9.4 Gbits/s in hardware, compared to 9.2-9.3 Gbits/s in
Flexplane. This 1-2% difference in throughput is due to
bandwidth allocated for abstract packets in Flexplane.
Queueing. During the experiment described above, we
sample the total buffer occupancy in the hardware router
every millisecond, and the emulator logs the occupancy
of each emulated port at the same frequency.

Table 2 shows that Flexplane maintains similar queue
occupancies as the hardware schemes. For DropTail it
maintains high occupancies (close to the max of 1024)
with large variations in occupancy, while for the other two
schemes the occupancies are lower and more consistent.
Flexplane does differ from hardware in that its occupan-
cies tend to be slightly lower and to display more variation.
We believe this is due to the effectively longer RTT in
Flexplane. When the congestion window is reduced, the
pause before sending again is longer in Flexplane, allow-
ing the queues to drain more.

During the Flexplane experiments, the hardware queue
sizes remain small: the mean is 7-10 MTUs and the 95th
percentile is 14-22 MTUs. These numbers are small com-
pared to the queue sizes in the emulator or in the hardware
queues during the hardware experiments, and indicate that
queueing in the hardware network does not significantly
impact the accuracy of Flexplane (§3.4).
Flow completion time. Next we evaluate Flexplane’s ac-
curacy at the application level in terms of flow completion
time (FCT). We run an RPC-based application in which
four clients repeatedly request data from 32 servers. The
size of the requested data is determined by an empirical
workload derived from live traffic in a production data-
center that supports web search (first presented in [8]). It
includes a mixture of flows of different sizes. 53% of the
flows are small flows of less than 100KB, but 37% of the
bytes come from large flows of 10MB or larger. Request
times are chosen by a Poisson process such that the clients
receive a specified load between 10% and 80%. We nor-
malize the FCT for each flow to the average FCT achieved
by a flow of the same size, in an unloaded network, when
flows are requested continuously.

class PriorityScheduler : public Scheduler {

public:

AbstractPkt

*

PriorityScheduler::schedule(uint32_t

port) {

/

*

get the mask of non-empty queues

*

/

uint64_t mask = m_bank->non_empty_qmask(port);

uint64_t q_index;

/

*

bsfq: find the first set bit in mask

*

/

asm("bsfq %1,%0":"=r"(q_index):"r"(mask));

return m_bank->dequeue(port, q_index);

}

private:

PacketQueueBank

*

m_bank;

}

Figure 5: Source code for a priority scheduler in Flexplane over
 64 queues. A PacketQueueBank stores packets between the
calls to enqueue and schedule.

scheme LOC
drop tail queue manager 39

RED queue manager 125
DCTCP queue manager 43

priority queueing scheduler 29
round robin scheduler 40

HULL scheduler 60
pFabric QM, queues, scheduler 251

Table 3: Lines of code (LOC) in the emulator for each resource
management scheme.

We run this application for DropTail and DCTCP, in
Flexplane and in the hardware network. Figure 4 shows
the average normalized FCTs. For both small flows and
large flows, results with Flexplane closely match results
obtained with a hardware network. For loads up to 60%
with both schemes, Flexplane estimates average normal-
ized FCTs of hardware to within 2-8% for small flows
and 3-14% for large flows. Accuracy decreases slightly
for higher loads of 70% and 80%, but remains within 18%
for small flows and 24% for large flows.

5.2 Flexplane Utility
In this section, we evaluate the utility of Flexplane. We
study how easy it is to write new schemes in Flexplane and
provide four examples of how Flexplane can be useful.
Ease of use. To demonstrate the simplicity of implemen-
tation, we show the key portions of the source code for
priority queueing scheduling in Figure 5. Most schemes
require only a few dozen lines of code to implement, as
shown in Table 3. pFabric requires significantly more
code than other schemes because it does not maintain
packets in FIFO order between the enqueue and dequeue
stages; 170 of the 251 lines of code are used to implement
custom queueing.
Parameter tuning. Flexplane enables users to quickly
tune protocol parameters to accommodate different net-
works. For example, the authors of HULL [9] conducted
evaluations using a testbed with 1 Gbits/s links; we use
Flexplane to tune HULL’s parameters to fit our 10 Gbits/s

8

Flexplane	
  is	
  Easy	
  to	
  Use	
  
•  Implemented	
  several	
  schemes	
  in	
  dozens	
  of	
  lines	
  of	
  
code	
  



Flexplane	
  Enables	
  Experimenta0on	
  
•  Evalua0ng	
  trade-­‐offs	
  between	
  resource	
  management	
  
schemes	
  

●

●

●

● ●

●

●

better

HULL

DropTail

Priority Queueing250

300

350

400

303540455055
Low priority FCT (ms)

H
ig

h 
pr

io
rit

y 
FC

T 
(u

s)

●

●

●

●

●

●

●

DCTCP
DropTail
HULL
pFabric

Priority Queueing
RED
Round Robin



Flexplane	
  Enables	
  Experimenta0on	
  
•  Experiment	
  with	
  real	
  distributed	
  applica0ons	
  such	
  as	
  
Spark	
  

●

●

●●●

●

●

●

0

1

2

3

4

5

6

0.2 0.4 0.6 0.8
Load

N
or

m
al

ize
d 

FC
T

●

DCTCP
HULL
pFabric
TCP−DropTail

(a) (0, 100KB]: Average

●

●

●●

●

●

●

●

0

5

10

15

20

0.2 0.4 0.6 0.8
Load

N
or

m
al

ize
d 

FC
T

(b) (0, 100KB]: 99th percentile

●
●

●
●

●

●
●

●

0

2

4

6

8

0.2 0.4 0.6 0.8
Load

N
or

m
al

ize
d 

FC
T

(c) (10MB, •): Average

Figure 7: Normalized flow completion times for the web search workload, for four different schemes run in Flexplane. Note the
different y axes.

Priority queueing performs well on this simple workload,
achieving good performance for both flow types. A net-
work operator could use these results to determine what
scheme to run in their network, depending on how they
value performance of high priority flows relative to low
priority flows.

Real applications. In addition to enabling experimenta-
tion with network-bound workloads like the one above,
Flexplane enables users to evaluate the performance im-
pact of different resource management schemes on real
applications whose performance depends on both net-
work and computational resources. We consider two ap-
plications that perform distributed computations using
Spark [1]. The first uses block coordinate descent [2]
to compute the optimal solution to a least squares prob-
lem; this is a staple of many machine learning tasks. The
second performs an in-memory sort [4]. For this exper-
iment, we use a small cluster of 9 machines (1 master
and 8 workers), each with 8 cores, connected via a single
switch with 1 Gbit/s links. We use Flexplane to run each
application with DropTail, DCTCP, and HULL.

Table 4 shows that different Spark applications are
affected in different ways by a change in resource man-
agement scheme. The sort application, which includes
multiple waves of small tasks and small data transfers,
shows small improvements in completion time, relative to
DropTail, when run with DCTCP or HULL. In contrast,
coordinate descent takes 4.4% longer to complete when
run with DCTCP, and 29.4% longer when run with HULL.
This is because this application sends data in a small num-
ber of bulk transfers whose throughput is degraded by
HULL’s, and to a lesser extent DCTCP’s, more aggressive
responses to congestion. Flexplane enabled us to quickly
evaluate the impact of a change in resource management
scheme on these real-world applications. Because these
applications spend much of their time performing com-
putation (>75%), it is not possible to accurately conduct
this experiment in a network simulator today.

Reproducible research. Here we demonstrate how ex-

% Change in Completion Time
Relative to DropTail

Coordinate descent Sort
DCTCP +4.4% -4.8%
HULL +29.4% -2.6%

Table 4: Percent change in completion time of two Spark appli-
cations when run with DCTCP or HULL, relative to when run
with DropTail.

periments that researchers conducted in simulation in
the past can be conducted on a real network with Flex-
plane, and how results in a real network might differ from
those in simulation. To do so, we recreate an experi-
ment that has been conducted in several other research pa-
pers [12, 14, 26]. We use the same network configuration
and workload as in the flow completion time experiment
in §5.1; this is the same workload used in prior work.

Figure 7 shows the results of running this workload for
DropTail, DCTCP, HULL, and pFabric, in Flexplane, at
loads ranging from 10% to 80%. We present the average
and 99th percentile normalized flow completion time for
small flows, and the average normalized flow completion
time for large flows, as in prior work.

We observe the same general trends as in prior work.
For the small flows, DropTail performs the worst, with
performance degrading significantly at the highest loads
and at the 99th percentile. In contrast, pFabric maintains
good performance for small flows, even at high load and
at the tail. For large flows, DCTCP and DropTail maintain
the best performance, while HULL and pFabric degrade
significantly at loads of 70%-80%. For HULL, this is
because the required bandwidth headroom begins to sig-
nificantly limit large flows. For pFabric, performance
degrades at high load because short queues cause many
packets to be dropped. This may be exacerbated by the
fact that we do not use all TCP modifications at the end-
points, including the probe mode (which is particularly
important at high load).

Our results demonstrate an unexpected phenomenon.
One would expect that under low load (e.g., 10%),

•  Performance	
  depends	
  on	
  network	
  and	
  CPU	
  



0

100

200

300

400

500

600

700

800

900

0 1 2 3 4 5 6 7 8
Emulation cores

R
ou

te
r t

hr
ou

gh
pu

t (
G

bi
ts

/s
)

racks connected with Agg

Emulator	
  Throughput	
  
•  Emulator	
  provides	
  761	
  Gbits/s	
  of	
  aggregate	
  
throughput	
  with	
  10	
  total	
  cores	
  

	
  

●

0

100

200

300

400

500

600

700

800

900

0 1 2 3 4 5 6 7 8
Emulation cores

R
ou

te
r t

hr
ou

gh
pu

t (
G

bi
ts

/s
)

●

racks connected with Agg

isolated racks

●

●

●

●

●

●

●

●

0

100

200

300

400

500

600

700

800

900

0 1 2 3 4 5 6 7 8
Emulation cores

R
ou

te
r t

hr
ou

gh
pu

t (
G

bi
ts

/s
)

●

racks connected with Agg

isolated racks

•  81x	
  as	
  much	
  throughput	
  per	
  clock	
  cycle	
  as	
  
RouteBricks	
  

	
  



Flexplane:	
  an	
  Experimenta0on	
  
Pla3orm	
  

•  Whole-­‐network	
  emula0on	
  
•  Flexplane:	
  a	
  pla3orm	
  for	
  faithful	
  experimenta0on	
  
with	
  resource	
  management	
  schemes	
  
–  Accuracy,	
  flexibility,	
  and	
  high	
  throughput	
  

hqps://github.com/aousterh/flexplane	
  


