Flexplane: An Experimentation Platform for Resource Management in Datacenters

Amy Ousterhout, Jonathan Perry, Hari Balakrishnan, Petr Lapukhov

Datacenter Networks

- Applications have diverse requirements
- Dozens of new resource management schemes
 - Low latency: DCTCP
 - Min FCT: PDQ, RCP, pFabric, PERC
 - Deadlines: D³, D²TCP
- Difficult to experiment with schemes in real networks
 - Requires changes to hardware routers

Experimentation with Resource Management

- Experimentation in real networks
 - Software routers limited throughput
 - Programmable hardware limited **flexibility**

By Altera Corporation - Altera Corporation, CC BY 3.0

Experimentation with Resource Management

- Experimentation in simulation (e.g., ns, OMNeT++)
 - Does not accurately model real network stacks, NICs, and distributed applications
 - Does not run in real time

No existing approach to experimentation provides accuracy, flexibility, and high throughput

Our Contributions

- Key idea: whole-network emulation
- Flexplane: a platform for faithful experimentation with resource management schemes
 - Accurate predicts behavior of hardware
 - Flexible express schemes in C++
 - High throughput 761 Gbits/s

Approach: Whole-Network Emulated Network

Abstract Packets

- Resource management schemes are *dataindependent*
- Concise representation of one MTU
 - Source, destination, flow, ID
 - Custom per-scheme fields

Emulator

IINS-3

- Real-time network simulator
- Faster than standard network simulators
 - Time divided into abstract-packet-sized timeslots
 - Omits endpoint software

Accuracy

- Goal: predict behavior of a hardware network
- Hardware latency:
- Added latency of Flexplane:
 - RTT to emulator
 - Unloaded delay
 - Queuing delay in real network

Flexplane API

• Decouples schemes from framework

Emulator	int route(AbstractPkt *pkt) int classify(AbstractPkt *pkt, int port) enqueue(AbstractPkt *pkt, int port, int queue) AbstractPkt *schedule(int output_port)
Endpoints	prepare_request(sk_buff *skb, char *request_data) prepare_to_send(sk_buff *skb, char *allocation_data)

Multicore Emulator Architecture

- Pin network components (routers, endpoints) to cores
- Communication via FIFO queues
- Router state not shared across cores

Implementation

- Emulator uses Intel DPDK for low-latency NIC access
- Endpoints run a Linux qdisc

Evaluation

- Accuracy
- Utility
- Emulator throughput

Flexplane is Accurate

- Bulk TCP: 5 senders, 1 receiver
- Throughput 9.2-9.3 Gbits/s vs. 9.4 Gbits/s in hardware
- Similar queue occupancies

ies	Median Queue Occupancies		
	(MTUs)		
	Hardware	Flexplane	
DropTail	931	837	
RED	138	104	
DCTCP	61	51	

Flexplane is Accurate

RPC web search workload

- Accurate to within 2-14% for loads up to 60%
- Observe behavior not visible in simulations

Flexplane is Easy to Use

Implemented several schemes in dozens of lines of code

scheme	LOC
drop tail queue manager	39
RED queue manager	125
DCTCP queue manager	43
priority queueing scheduler	29
round robin scheduler	40
HULL scheduler	60
pFabric QM, queues, scheduler	251

Flexplane Enables Experimentation

 Evaluating trade-offs between resource management schemes

Flexplane Enables Experimentation

 Experiment with real distributed applications such as Spark

	% Change in Completion Time		
	Relative to DropTail		
	Coordinate descent	Sort	
DCTCP	+4.4%	-4.8%	
HULL	+29.4%	-2.6%	

• Performance depends on network and CPU

Emulator Throughput

• Emulator provides 761 Gbits/s of aggregate throughput with 10 total cores

 81x as much throughput per clock cycle as RouteBricks

Flexplane: an Experimentation Platform

- Whole-network emulation
- Flexplane: a platform for faithful experimentation with resource management schemes
 - Accuracy, flexibility, and high throughput

https://github.com/aousterh/flexplane