Shenango: Achieving High CPU Efficiency for
Latency-sensitive Datacenter Workloads

Amy Joshua Jonathan Adam Hari

g E Ousterhout Fried Behrens Belay Balakrishnan

CSAIL 1




Trend #1: Faster Networks

2008 2018
Latency: ~100 s 20x _, Latency: ~5 ps
Throughput: 1 Gbits/s 100x Throughput: 100 Gblts/s -

e But today’s operating systems add significant overheads to 1/0



The Rise of Kernel Bypass

Traditional Approach Kernel Bypass
Application 2072 | Application
C%le [ +}e | CF}Q i |7Kerne|—‘ % core
Kernel r o o A4
o EIGE
E E E E NIC packet queues
NIC packet queues

* Dedicate busy-spinning cores
* Applications directly poll NIC queues
* Enables higher throughput and lower latency



Trend #2: Slowing of Moore’s Law

increased demand for servers

* CPUs only utilized 10-66% today
* CPU efficiency becomes increasingly important



Load Variation Makes Efficiency Challenging

e Load variation for datacenter workloads
— Days: diurnal cycles
— Microseconds: packet bursts, thread bursts

* Peak load requires significantly more cores than average load

MUWW

[ T T T T T T 1
6Aug 7Aug 8Aug 9Aug 10Aug 11Aug 12Aug 13Aug

N

- o

N A
1 ]

Scaled queries per second
o N »d O @ 5
(Y R N N

Performance Analysis of Cloud Applications, NSDI ‘18 5



The Need for Multiplexing

* Two types of applications: latency-sensitive and batch-
processing

e Pack both on the same server

— Bing does this on over 90,000 servers

“T I
8=

Spor‘llzZ Sl

cassan dra

@ b Bing
oy B

Spor‘lﬁz e

@ @ b Bing
Py




Multiplexing with Existing Approaches

 Example: Memcached + batch processing application

client server

Q



Multiplexing with Existing Approaches

= Linux = Goal —- ZygOS

2 400 %

cc>>’ 3004 @ —
@ poor throughput _~
w2004 //

i 100- poor latency _

o

»

o O T T T
(o))

Batch Ops/s

1004 %
754
504 .
25 -

Memcached Offered Load (million requests/s)

No existing approach provides high network
performance and high CPU efficiency




Goal

Reconcile the tradeoff between high CPU efficiency and
network performance
Reallocate cores across applications at microsecond

granularity
— Coarser granularities insufficient for microsecond-scale tasks and
microsecond-scale bursts



Challenges of Fast Reallocations

How many cores does an application need?
— Application-level metrics are too slow
— Multiple sources of load: packets and threads

Overhead of reallocation
— Reconfiguring hardware is too slow

Existing systems don’t address these challenges

10



Shenango’s Contributions

Efficient algorithm for determining when an application
needs more cores

— Based on thread and packet queueing delays

IOKernel: steers packets in software and allocates cores
— Core reallocations take ~5 ps

Cache-aware core selection algorithm
Load balancing of packet protocol (e.g., TCP) handling

11



app
thread

runtime
library

packet
queues

Shenango’s Design

work stealing active
core '
App 1 App 2 idle core
=
Kernel

T~

~l |l
|IOKernel

12

NIC queues




How Many Cores Should the IOKernel Allocate?

active
core
idle core
App 1 / App 2
app \
thread |~F | [ R
runtime | | GDI[? — 1 B | —
library % 'E —I:L Seneeee F e ] — ! %L
packet - Kernel
queues @ periodic T
algorithm @ packet arrival  ~J 1~
|OKernel and no cores

NIC queues 13




Compute Congestion

 Compute congestion: when granting an application an
additional core would allow it to complete its work more
quickly

* Goal: grant each application as few cores as possible while
avoiding compute congestion

active core

App 1

OS] =

new thread

app thread




Congestion Detection Algorithm

* Queued threads or packets indicate congestion
* Any packets or threads queued since the last run (5 ps ago)?

— Grant one more core

* Ring buffers enable an efficient check

— head,_, ; > tail,_, implies congestion

) tail,_ tail._
active core Allt=0 =0

App 1

runqueue 4§;> '459
packet EHj (Hﬂ

queues

not congested

< tail,_,

headtzo 15



Implementation

|OKernel

— Uses DPDK 18.11
Runtime

— UDP and TCP

— C++ and Rust bindings

13,000 lines of code total

16



Evaluation Questions

How well does Shenango reconcile the tradeoff between CPU
efficiency and network performance?

How does Shenango respond to sudden bursts in load?

How do Shenango’s individual mechanisms contribute to its
overall performance?

17



Experimental Setup

* 1 server + 6 clients, 10 Gbits/s NICs

e C(Clients run our open-loop load generator built on Shenango
— Requests follow Poisson arrivals, use TCP

Kernel Bypass Lightweight Balancing

Networking Threading Interval
Linux X X 4000 ps
ZygOS (SOSP ’17) X N/A
Arachne (OSDI ’18) X 50000 ps
Shenango 5 us




CPU Efficiency and Network Performance
with Memcached i

* Memcached + batch processing application saturated

....... Linux - -+ Arachne — Shenango — ZygOS_

0
=2 400 ]
> 1
= 8007 ¢ i kernel bypass
g 207 4 ! networking
f /] 2 100 - L
- - .=@————.—“ .
(o)} 0 2 4 6
) .
¢ B 1004 %
, § 754
client server = 504
[&]
g 25 -
O-

Memcached Offered Load (million requests/s)

* Shenango matches ZygOS’s tail latency with high CPU efficiency

19



Shenango is Resilient to Bursts in Load

 TCP requests with 1 ps synthetic work + batch processing

application

* Increase or decrease the load every 1s

99.9% Latency (us) Offered Load

(million requests/s)

—
o
o
o
1

750 ~
500

250 4

ol S , | @

--- Arachne — Shenango

Oo=NWwhO
PR I |

0 _ 10 15
Time (s)

@ E Ii590ms

Yo L)

e

o e ____

10 15
Time (s)

o 4

reallocates cores

10,000x as often
20



Conclusion

* Shenango reconciles the tradeoff between low tail latency
and high CPU efficiency

* Reallocates cores at microsecond granularity

— Efficient congestion detection algorithm
— lOKernel: allocates cores and steers packets in software

https://github.com/shenango

21



